Showing changes from revision #1 to #2:
Added | Removed | Changed
Could not include contents
Sandbox
My First Slide
Markdown+itex2MML Sandbox
Play around below . Your changes will, periodically, be rolled back.
First Page
Some examples
(1) min w h p h + w r p r + w l p l
\mathop{min} w_h p_h + w_r p_r + w_l p_l
(2) { ∇ × B → − 1 c ∂ E → ∂ t = 4 π c j → ∇ ⋅ E → = 4 π ρ ∇ × E → + 1 c ∂ B → ∂ t = 0 → ∇ ⋅ B → = 0
\left\{
\begin{aligned}
\nabla \times \vec{\mathbf{B}} - \frac{1}{c}\frac{\partial\vec{\mathbf{E}}}{\partial t} &= \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} &= 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}+\frac{1}{c}\frac{\partial\vec{\mathbf{B}}}{\partial t} &= \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} &= 0
\end{aligned}
\right.
Here’s an equation
(3) ∫ − ∞ ∞ e − a x 2 / 2 d x = 2 π a
{\int_{-\infty}^\infty e^{-a x^2/2} \mathrm{d}x} = \sqrt{\frac{2\pi}{a}}
which we can later refer1 back to as (3) .
Aligned equations:
(4) a + b = b + a a + ( b + c ) = ( a + b ) + c \begin{aligned}
a+b &= b+a \\
a+(b+c) &= (a+b)+c
\end{aligned}
The Dirac equation (boxed):
( i D + m ) ψ = 0
\boxed{(i\slash{D}+m)\psi = 0}
Here’s the table of Clifford2 algebras over ℝ \mathbb{R} :
j j 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 𝒞 ℓ j − \mathcal{C}\ell_{j}^- ℝ \mathbb{R} ℂ \mathbb{C} ℍ \mathbb{H} ℍ ⊕ ℍ \mathbb{H}\oplus\mathbb{H} ℍ ( 2 ) \mathbb{H}(2) ℂ ( 4 ) \mathbb{C}(4) ℝ ( 8 ) \mathbb{R}(8) ℝ ( 8 ) ⊕ ℝ ( 8 ) \mathbb{R}(8)\oplus\mathbb{R}(8) ℝ ( 16 ) \mathbb{R}(16)
𝒞 ℓ j + \mathcal{C}\ell_{j}^+ ℝ \mathbb{R} ℝ ⊕ ℝ \mathbb{R}\oplus\mathbb{R} ℝ ( 2 ) \mathbb{R}(2) ℂ ( 2 ) \mathbb{C}(2) ℍ ( 2 ) \mathbb{H}(2) ℍ ( 2 ) ⊕ ℍ ( 2 ) \mathbb{H}(2)\oplus\mathbb{H}(2) ℍ ( 4 ) \mathbb{H}(4) ℂ ( 8 ) \mathbb{C}(8) ℝ ( 16 ) \mathbb{R}(16)
where the generators of 𝒞 ℓ j ± \mathcal{C}\ell_{j}^\pm satisfy
γ i γ j + γ j γ i = ± 2 δ i j
\gamma_i\gamma_j +\gamma_j \gamma_i =\pm 2\delta_{i j}
and 𝒞 ℓ n + 8 ± = 𝒞 ℓ n ± ⊗ ℝ ( 16 ) \mathcal{C}\ell_{n+8}^\pm = \mathcal{C}\ell_n^\pm \otimes \mathbb{R}(16) .
(5) lim n → ∞ ∑ k = 1 n 1 k 2 = π 2 6
\lim_{n \to \infty}
\sum_{k=1}^n \frac{1}{k^2}
= \frac{\pi^2}{6}
(6) V 1 × V 2 = ∣ i j k ∂ X ∂ u ∂ Y ∂ u 0 ∂ X ∂ v ∂ Y ∂ v 0 ∣
\mathbf{V}_{1} \times \mathbf{V}_{2} =
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\\\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \\
\end{vmatrix}
Second Page
More Examples
(7) ∇ × E → = − ∂ B → ∂ t \nabla \times \vec{E} = - \frac {\partial \vec{B}}{\partial t} (8) ∮ B ⋅ d l = μ 0 I enc
\oint \mathbf{B}\cdot \mathrm{d}\mathbf{l} = \href{https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_circuital_law}{\mu_0 I_\text{enc}}
H 1 ( 𝒵 , 𝒪 ( − k ) ) H^1(\mathcal{Z}, \mathcal{O}(-k)) Let G = ( V , E ) G=(V,E) be a graph, with w : V → [ 0 , 1 ] w:V\to [0,1] a weight function.
(9) { Q i , Q j } = δ ij ℋ . \{Q_i, Q_j\} = \delta_{ij}\mathcal{H}.
Third Page
Theorems
Definition
Let H H be a subgroup of a group G G . A left coset of H H in G G is a subset of G G that is of the form x H x H , where x ∈ G x \in G and x H = { x h : h ∈ H } x H = \{ x h : h \in H \} .
Similarly a right coset of H H in G G is a subset of G G that is of the form H x H x , where H x = { h x : h ∈ H } H x = \{ h x : h \in H \} .
Lemma
Let H H be a subgroup of a group G G , and let x x and y y be elements of G G . Suppose that x H ∩ y H x H \cap y H is non-empty. Then x H = y H x H = y H .
Proof
Let z z be some element of x H ∩ y H x H \cap y H . Then z = x a z = x a for some a ∈ H a \in H , and z = y b z = y b for some b ∈ H b \in H . If h h is any element of H H then a h ∈ H a h \in H and a − 1 h ∈ H a^{-1}h \in H , since H H is a subgroup of G G . But z h = x ( a h ) z h = x(a h) and xh = z ( a − 1 h ) xh = z(a^{-1}h) for all h ∈ H h \in H . Therefore z H ⊂ x H z H \subset x H and x H ⊂ z H x H \subset z H , and thus x H = z H x H = z H . Similarly y H = z H y H = z H , and thus x H = y H x H = y H , as required.
Lemma
Let H H be a finite subgroup of a group G G . Then each left coset of H H in G G has the same number of elements as H H .
Proof
Let H = { h 1 , h 2 , … , h m } H = \{ h_1, h_2,\ldots, h_m\} , where h 1 , h 2 , … , h m h_1, h_2,\ldots, h_m are distinct, and let x x be an element of G G . Then the left coset x H x H consists of the elements x h j x h_j for j = 1 , 2 , … , m j = 1,2,\ldots,m . Suppose that j j and k k are integers between 1 1 and m m for which x h j = x h k x h_j = x h_k . Then h j = x − 1 ( x h j ) = x − 1 ( x h k ) = h k h_j = x^{-1} (x h_j) = x^{-1} (x h_k) = h_k , and thus j = k j = k , since h 1 , h 2 , … , h m h_1, h_2,\ldots, h_m are distinct. It follows that the elements x h 1 , x h 2 , … , x h m x h_1, x h_2,\ldots, x h_m are distinct. We conclude that the subgroup H H and the left coset x H x H both have m m elements, as required.
Theorem
(Lagrange’s Theorem). Let G G be a finite group, and let H H be a subgroup of G G . Then the order of H H divides the order of G G .
Proof
Each element x x of G G belongs to at least one left coset of H H in G G (namely the coset x H x H ), and no element can belong to two distinct left cosets of H H in G G (see Lemma 1 ). Therefore every element of G G belongs to exactly one left coset of H H . Moreover each left coset of H H contains | H | |H| elements (Lemma 2 ). Therefore | G | = n | H | |G| = n |H| , where n n is the number of left cosets of H H in G G . The result follows.
Corollary
Let x x be an element of a finite group G G . Then the order of x x divides the order of G G .
Theorem
Let f : Δ ⟶ Δ , f : \Delta \longrightarrow \Delta, where Δ = { z ∈ ℂ : | z | < 1 } \Delta=\{z\in\mathbb{C}: \vert z \vert \lt 1\} , be analytic with a ∈ Δ a \in \Delta . Then
| f ( z ) − f ( a ) 1 − f ( a ) ¯ f ( z ) | ≤ | z − a 1 − a ¯ z |
\left\vert\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}\right\vert\le \left\vert\frac{z-a}{1-\overline{a}z}\right\vert
for all | z | ≤ 1 \vert z \vert \le 1 and
| f ′ ( a ) | 1 − | f ( a ) | 2 ≤ 1 1 − | a | 2 .
\frac{\vert f'(a)\vert}{1-\vert f(a)\vert^2}\le \frac{1}{1-\vert a \vert^2}.
Furthermore, equality holds iff f f realizes a conformal mapping of Δ \Delta onto itself.
Proof
Let w = z − a 1 − a ¯ z w=\frac{z-a}{1-\overline{a}z} and put ϕ ( w ) = f ( z ) − f ( a ) 1 − f ( a ) ¯ f ( z ) \phi(w)=\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)} . Define for abs b < 1 \abs{b}\lt 1 C b ( z ) = z − b 1 − b ¯ z . C_b(z)=\frac{z-b}{1-\overline{b}z}. All conformal maps from Δ \Delta to itself, sending b b to 0 0 , are of the form C b ( z ) e i γ C_b(z)e^{i\gamma} for γ ∈ [ 0 , 2 π ] . \gamma\in[0,2\pi]. In this notation, ϕ ( w ) = C f ( a ) ∘ f ∘ C a − 1 ( w ) , \phi(w)=C_{f(a)}\circ f \circ C_a^{-1}(w), where C a − 1 C_a^{-1} is the inverse of C a C_a as a function. Note that C a ( z ) C_a(z) is conformal, so it has an inverse. It is clear that ϕ ( 0 ) = C f ( a ) ∘ f ∘ C a − 1 ( 0 ) = C f ( a ) ( f ( a ) ) = 0 \phi(0)=C_{f(a)}\circ f \circ C_a^{-1}(0)=C_{f(a)}(f(a))=0 . Since C a − 1 : Δ ⟶ Δ C_a^{-1}: \Delta \longrightarrow \Delta and f : Δ ⟶ Δ f : \Delta \longrightarrow \Delta and C f ( a ) : Δ ⟶ Δ , C_{f(a)}: \Delta \longrightarrow \Delta, then | ϕ ( w ) | < 1 \vert\phi(w)\vert\lt 1 for | w | < 1 . \vert w\vert \lt 1 . Applying Schwarz’s lemma, we obtain | ϕ ( w ) | ≤ | w | \vert\phi(w)\vert\le \vert w \vert for | w | ≤ 1 \vert w \vert \le 1 . Furthermore, if equality holds, then f ( z ) = e i γ ′ z f(z)=e^{i\gamma'} z for γ ′ ∈ [ 0 , 2 π ] \gamma'\in [0,2\pi] . Therefore,
(10) | f ( z ) − f ( a ) 1 − f ( a ) ¯ f ( z ) | ≤ | z − a 1 − a ¯ z |
\left\vert\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}\right\vert\le \left\vert\frac{z-a}{1-\overline{a}z}\right\vert
for all | z | ≤ 1 . \vert z \vert\le 1. Rearranging, we obtain
| f ( z ) − f ( a ) z − a | ≤ | 1 − f ( a ) ¯ f ( z ) 1 − a ¯ z | .
\left\vert\frac{f(z)-f(a)}{z-a}\right\vert\le\left\vert\frac{1-\overline{f(a)}f(z)}{1-\overline{a}z}\right\vert.
If we take the limit as z z tends to a a , we obtain
| f ′ ( a ) | ≤ | 1 − | f ( a ) | 2 1 − | a | 2 | = 1 − | f ( a ) | 2 1 − | a | 2 ,
\left\vert f'(a)\right\vert \le \left\vert\frac{1-\vert f(a)\vert ^2}{1-\vert a \vert^2}\right\vert=\frac{1-\vert f(a)\vert^2}{1-\vert a \vert^2},
or
| f ′ ( a ) | 1 − | f ( a ) | 2 ≤ 1 1 − | a | 2 .
\frac{\vert f'(a)\vert}{1-\vert f(a)\vert^2}\le \frac{1}{1-\vert a \vert^2}.
As said above, if equality holds in (10) , then Schwarz’s lemma tells us that ϕ ( w ) = e i γ ′ w \phi(w)=e^{i\gamma'}w . Thus, ϕ ( w ) = C f ( a ) ∘ f ∘ C a − 1 ( w ) = e i γ ′ w , \phi(w)=C_{f(a)}\circ f \circ C_a^{-1}(w)=e^{i\gamma'}w, so f ( z ) = C f ( a ) − 1 ( e i γ ′ C a ( z ) ) f(z)=C_{f(a)}^{-1}(e^{i\gamma'}C_a(z)) . Since e i γ ′ C a ( z ) e^{i\gamma'}C_a(z) is conformal, C f ( a ) − 1 , C_{f(a)}^{-1}, the inverse function of C f ( a ) C_{f(a)} , is conformal, and a composition of conformal maps is conformal, then f f is a conformal map of Δ \Delta onto itself. Conversely, if f f is a conformal map of Δ \Delta onto itself, then ϕ ( w ) = C f ( a ) ∘ f ∘ C a − 1 ( w ) = e i γ C b ( w ) , \phi(w)=C_{f(a)}\circ f \circ C_a^{-1}(w)=e^{i\gamma}C_b(w), since a composition of conformal maps is conformal and because all conformal maps from Δ \Delta onto itself are of the form e i γ C b ( w ) . e^{i\gamma}C_b(w). We also know that ϕ ( 0 ) = 0 , \phi(0)=0, so b = 0 b=0 . Therefore,
ϕ ( w ) = e i γ C 0 ( w ) = e i γ w ⇔ | ϕ ( w ) | = | w | ⇔ | f ( z ) − f ( a ) 1 − f ( a ) ¯ f ( z ) | = | z − a 1 − a ¯ z |
\phi(w)=e^{i\gamma}C_0(w)=e^{i\gamma}w \Leftrightarrow \vert\phi(w)\vert=\vert w \vert \Leftrightarrow \left\vert\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}\right\vert=\left\vert\frac{z-a}{1-\overline{a}z}\right\vert
for all | z | ≤ 1 \vert z \vert\le 1 . In sum, equality holds in (10) iff f f is a conformal map from Δ \Delta to itself.
SVG graphics, created in SVG-Edit:
Layer 1
E
Σ
E_\Sigma
E
Σ
out
E_{\Sigma_{\text{out}}}
E
in
E_{\text{in}}
[
Σ
,
X
]
[\Sigma, X]
[
Σ
out
,
X
]
[\Sigma_{\text{out}}, X]
[
Σ
in
,
X
]
[\Sigma_{\text{in}}, X]
Bord
(
X
)
Bord(X)
V
V
E
out
E_{\text{out}}
in
\text{in}
out
\text{out}
exp
(
S
∇
)
|
Σ
in
\exp(S_\nabla)\vert_{\Sigma_{\text{in}}}
exp
(
S
∇
)
\exp(S_\nabla)
exp
(
S
∇
)
|
Σ
out
\exp(S_\nabla)\vert_{\Sigma_{\text{out}}}
E
in
E_{\text{in}}
\begin{svg}<svg width="450" height="400" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="67492">
<defs>
<marker refX="8" orient="auto" markerHeight="5" markerWidth="5" markerUnits="strokeWidth" refY="5" id="se_arrow_67492_fw1" viewBox="0 0 10 10">
<path id="svg_67492_23" fill="#000" d="m0,0l10,5l-10,5l5,-5l-5,-5z"/>
</marker>
</defs>
<g class="layer">
<title>Layer 1</title>
<polyline se:connector="svg_67492_7 svg_67492_8" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="296,279 345.5,316.125 395,353.25" id="svg_67492_22"/>
<polyline se:connector="svg_67492_5 svg_67492_7" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="276.99,178 278.208,214 279.425,250" id="svg_67492_21"/>
<polyline se:connector="svg_67492_6 svg_67492_7" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="179,268.156 212,267.779 245,267.401" id="svg_67492_20"/>
<polyline se:connector="svg_67492_4 svg_67492_7" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="163.529,174 211.119,212 258.71,250" id="svg_67492_18"/>
<polyline se:connector="svg_67492_4 svg_67492_5" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="173,162.287 206.5,162.68 240,163.072" id="svg_67492_17"/>
<polyline se:connector="svg_67492_4 svg_67492_6" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="148.556,174 148.732,211.5 148.908,249" id="svg_67492_16"/>
<polyline se:connector="svg_67492_1 svg_67492_3" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="70.1165,92 70.4757,129 70.835,166" id="svg_67492_15"/>
<polyline se:connector="svg_67492_1 svg_67492_2" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="82,80.0462 128.5,80.225 175,80.4038" id="svg_67492_14"/>
<polyline se:connector="svg_67492_2 svg_67492_5" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="211.982,93.5 235.255,118.75 258.527,144" id="svg_67492_13"/>
<polyline se:connector="svg_67492_1 svg_67492_4" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="81.4878,92 106.857,118.5 132.226,145" id="svg_67492_11"/>
<polyline se:connector="svg_67492_3 svg_67492_6" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="81.9474,195 106.579,222 131.211,249" id="svg_67492_10"/>
<foreignObject height="24" width="24" font-size="16" id="svg_67492_1" y="68" x="58">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>E</mi>
<mi>Σ</mi>
</msub>
</mrow>
<annotation encoding="application/x-tex">E_\Sigma</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject height="26" width="40" font-size="16" id="svg_67492_2" y="67.5" x="180">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<msub>
<mi>Σ</mi>
<mtext>out</mtext>
</msub>
</mrow>
</msub>
</mrow>
<annotation encoding="application/x-tex">E_{\Sigma_{\text{out}}}</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject height="24" width="24" font-size="16" id="svg_67492_3" y="171" x="59">
<math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>E</mi>
<mtext>in</mtext>
</msub>
</mrow>
<annotation encoding="application/x-tex">E_{\text{in}}</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject height="24" width="49" font-size="16" id="svg_67492_4" y="150" x="124">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mo stretchy="false">[</mo>
<mi>Σ</mi>
<mo>,</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mrow>
<annotation encoding="application/x-tex">[\Sigma, X]</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject height="29" width="63" font-size="16" id="svg_67492_5" y="149" x="245">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mo stretchy="false">[</mo>
<msub>
<mi>Σ</mi>
<mtext>out</mtext>
</msub>
<mo>,</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mrow>
<annotation encoding="application/x-tex">[\Sigma_{\text{out}}, X]</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject height="29" width="60" font-size="16" id="svg_67492_6" y="254" x="119">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mo stretchy="false">[</mo>
<msub>
<mi>Σ</mi>
<mtext>in</mtext>
</msub>
<mo>,</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mrow>
<annotation encoding="application/x-tex">[\Sigma_{\text{in}}, X]</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject height="24" width="60" font-size="16" id="svg_67492_7" y="255" x="250">
<math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mi>Bord</mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<annotation encoding="application/x-tex">Bord(X)</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject height="24" width="24" font-size="16" id="svg_67492_8" y="351" x="396">
<math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mi>V</mi>
</mrow>
<annotation encoding="application/x-tex">V</annotation>
</semantics>
</math>
</foreignObject>
<path marker-end="url(#se_arrow_67492_fw1)" stroke-width="2" stroke="#000000" fill="none" d="m303,177c37.30435,34.82927 93.82608,76.82927 104,168" id="svg_67492_35"/>
<path marker-end="url(#se_arrow_67492_fw1)" stroke-width="2" stroke="#000000" fill="none" d="m162,281c67,70 143,83 230,83" id="svg_67492_36"/>
<foreignObject x="115.5" y="55" id="svg_67492_99" font-size="16" width="35" height="24">
<math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>E</mi>
<mtext>out</mtext>
</msub>
</mrow>
<annotation encoding="application/x-tex">E_{\text{out}}</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject height="24" width="31" font-size="16" id="svg_67492_98" y="197" x="123">
<math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mtext>in</mtext>
</mrow>
<annotation encoding="application/x-tex">\text{in}</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="193" y="142" font-size="16" width="31" height="24" id="svg_67492_9">
<math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mtext>out</mtext>
</mrow>
<annotation encoding="application/x-tex">\text{out}</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="179" y="328" id="svg_67492_12" font-size="16" width="85" height="29" transform="rotate(30.4258, 221.5, 342.5)">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mi>exp</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>S</mi>
<mo>∇</mo>
</msub>
<mo stretchy="false">)</mo>
<msub>
<mo stretchy="false">|</mo>
<mrow>
<msub>
<mi>Σ</mi>
<mtext>in</mtext>
</msub>
</mrow>
</msub>
</mrow>
<annotation encoding="application/x-tex">\exp(S_\nabla)\vert_{\Sigma_{\text{in}}}</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject transform="rotate(37.6477, 338.5, 328.5)" height="29" width="66" font-size="16" id="svg_67492_38" y="314" x="305.49998">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mi>exp</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>S</mi>
<mo>∇</mo>
</msub>
<mo stretchy="false">)</mo>
</mrow>
<annotation encoding="application/x-tex">\exp(S_\nabla)</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject id="svg_67492_19" transform="rotate(49.3987, 365, 218)" height="29" width="96" font-size="16" y="203.5" x="317">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mi>exp</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>S</mi>
<mo>∇</mo>
</msub>
<mo stretchy="false">)</mo>
<msub>
<mo stretchy="false">|</mo>
<mrow>
<msub>
<mi>Σ</mi>
<mtext>out</mtext>
</msub>
</mrow>
</msub>
</mrow>
<annotation encoding="application/x-tex">\exp(S_\nabla)\vert_{\Sigma_{\text{out}}}</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject height="24" width="31" font-size="16" id="svg_67492_97" x="39" y="121">
<math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>E</mi>
<mtext>in</mtext>
</msub>
</mrow>
<annotation encoding="application/x-tex">E_{\text{in}}</annotation>
</semantics>
</math>
</foreignObject>
</g>
</svg>\end{svg}
Commutative cube
Layer 1
A
0
A_0
C
0
C_0
A
1
A_1
C
1
C_1
B
0
B_0
D
0
D_0
B
1
B_1
D
1
D_1
\begin{svg}
<svg width="260" height="260" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="83381">
<desc>Commutative cube</desc>
<defs>
<marker refX="8" orient="auto" markerHeight="5" markerWidth="5" markerUnits="strokeWidth" refY="5" id="se_arrow_83381_fw4" viewBox="0 0 10 10">
<path fill="#666" d="m0,0l10,5l-10,5l5,-5l-5,-5z" id="svg_83381_2"/>
</marker>
<marker refX="8" orient="auto" markerHeight="5" markerWidth="5" markerUnits="strokeWidth" refY="5" id="se_arrow_83381_fw5" viewBox="0 0 10 10">
<path fill="#000" d="m0,0l10,5l-10,5l5,-5l-5,-5z" id="svg_83381_3"/>
</marker>
<linearGradient id="svg_83381_1" x1="0" y1="0" x2="1" y2="1">
<stop offset="0.25" stop-color="#888"/>
<stop offset="1" stop-color="#000"/>
</linearGradient>
</defs>
<g class="layer">
<title>Layer 1</title>
<foreignObject y="3" x="2" width="20" height="24" font-size="16" id="svg_83381_4">
<math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline">
<semantics>
<mrow>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">A_0</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject y="3" x="156" width="20" height="24" font-size="16" id="svg_83381_5">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>C</mi>
<mn>0</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">C_0</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject y="160" x="2" width="20" height="24" font-size="16" id="svg_83381_6">
<math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline">
<semantics>
<mrow>
<msub>
<mi>A</mi>
<mn>1</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">A_1</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject y="160" x="156" width="20" height="24" font-size="16" id="svg_83381_7">
<math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline">
<semantics>
<mrow>
<msub>
<mi>C</mi>
<mn>1</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">C_1</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject y="80" x="80" width="20" height="24" font-size="16" id="svg_83381_8">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>B</mi>
<mn>0</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">B_0</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject y="80" x="234" width="20" height="24" font-size="16" id="svg_83381_9">
<math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline">
<semantics>
<mrow>
<msub>
<mi>D</mi>
<mn>0</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">D_0</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject y="237" x="80" width="20" height="24" font-size="16" id="svg_83381_10">
<math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline">
<semantics>
<mrow>
<msub>
<mi>B</mi>
<mn>1</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">B_1</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject y="237" x="234" width="20" height="24" font-size="16" id="svg_83381_11">
<math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline">
<semantics>
<mrow>
<msub>
<mi>D</mi>
<mn>1</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">D_1</annotation>
</semantics>
</math>
</foreignObject>
<line marker-end="url(#se_arrow_83381_fw4)" y2="160" x2="10" y1="30" x1="10" fill="none" stroke-width="2" stroke="#666" id="svg_83381_12"/>
<line marker-end="url(#se_arrow_83381_fw4)" y2="172" x2="150" y1="172" x1="25" fill="none" stroke-width="2" stroke="#666" id="svg_83381_13"/>
<line marker-end="url(#se_arrow_83381_fw4)" y2="14" x2="150" y1="14" x1="25" fill="none" stroke-width="2" stroke="#666" id="svg_83381_14"/>
<line marker-end="url(#se_arrow_83381_fw4)" y2="160" x2="165" y1="30" x1="165" fill="none" stroke-width="2" stroke="#666" id="svg_83381_15"/>
<line marker-end="url(#se_arrow_83381_fw5)" y2="235" x2="90" y1="105" x1="90" fill="none" stroke-width="2" stroke="#000" id="svg_83381_16"/>
<line marker-end="url(#se_arrow_83381_fw5)" y2="248" x2="225" y1="248" x1="105" fill="none" stroke-width="2" stroke="#000" id="svg_83381_17"/>
<line marker-end="url(#se_arrow_83381_fw5)" y2="90" x2="225" y1="90" x1="105" fill="none" stroke-width="2" stroke="#000" id="svg_83381_18"/>
<line marker-end="url(#se_arrow_83381_fw5)" y2="235" x2="243" y1="105" x1="243" fill="none" stroke-width="2" stroke="#000" id="svg_83381_19"/>
<line marker-end="url(#se_arrow_83381_fw5)" y2="80" x2="78" y1="25" x1="20" fill="none" stroke-width="2" stroke="url(#svg_83381_1)" id="svg_83381_20"/>
<line marker-end="url(#se_arrow_83381_fw5)" y2="80" x2="233" y1="25" x1="175" fill="none" stroke-width="2" stroke="url(#svg_83381_1)" id="svg_83381_21"/>
<line marker-end="url(#se_arrow_83381_fw5)" y2="240" x2="78" y1="185" x1="20" fill="none" stroke-width="2" stroke="url(#svg_83381_1)" id="svg_83381_22"/>
<line marker-end="url(#se_arrow_83381_fw5)" y2="240" x2="233" y1="185" x1="175" fill="none" stroke-width="2" stroke="url(#svg_83381_1)" id="svg_83381_23"/>
</g>
</svg>
\end{svg}
Box diagram
W
+
W^+
W
−
W^-
s
¯
\overline{s}
d
¯
\overline{d}
Layer 1
s
s
d
d
u
,
c
,
t
u,\, c,\, t
u
,
c
,
t
u,\, c,\, t
K 0 K ¯ 0 K^0\overline{K}^0 Mixing
Yet More examples
Example anim01 - demonstrate animation elements
∫ − ∞ ∞
e − a x 2
d
x
=
π
a
{\int_{-\infty}^{\infty}e^{-a x^2}d x}=\sqrt{\tfrac{\pi}{a}}
Complicated commutative diagrams (equations in SVG)
Complicated commutative diagram, realized in SVG
1
1
1
1
1
1
1
1
Id
Id
Id
Id
A
A
B
B
ρ
\rho
H
H
H
H
K
K
K
'
K'
ϕ 1
\phi_1
ϕ 2
\phi_2
N A
N_A
N B
N_B
N A ∨
N^\vee_A
N B ∨
N^\vee_B
In SU ( 3 ) SU(3) ,
Rank-2 Symmetric Tensor Representation
⊗
Fundamental Representation
=
Adjoint Representation
⊕
Rank-3 Symmetric Tensor Representation
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="30" height="16" viewBox="0 0 30 16">
<desc>Rank-2 Symmetric Tensor Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
<rect width="10" height="10" x="10"/>
</g>
</svg>
\end{svg}\includegraphics[width=2em]{young1}
\otimes
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="16" viewBox="0 0 20 16">
<desc>Fundamental Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
</g>
</svg>
\end{svg}\includegraphics[width=1em]{young2}
=
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="30" height="26" viewBox="0 0 30 26">
<desc>Adjoint Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
<rect width="10" height="10" x="10"/>
<rect width="10" height="10" y="10"/>
</g>
</svg>
\end{svg}\includegraphics[width=2em]{young3}
\oplus
\begin{svg}
<svg xmlns="http://www.w3.org/2000/svg" width="40" height="16" viewBox="0 0 40 16">
<desc>Rank-3 Symmetric Tensor Representation</desc>
<g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2">
<rect width="10" height="10"/>
<rect width="10" height="10" x="10"/>
<rect width="10" height="10" x="20"/>
</g>
</svg>
\end{svg}\includegraphics[width=3em]{young4} .
r a + 1 = { 0 with prob. exp ( − θ r a ) max { δ r a , z } with prob. 1 − exp ( − θ r a ) r_{a+1} = \begin{cases}
0 & \text{with prob.}\quad \exp(-\theta r_a) \\
\max \lbrace \delta r_a, z \rbrace & \text{with prob.}\quad 1 - \exp(-\theta r_a)
\end{cases}
q a ( z ) = σ a − 1 exp [ − γ + z σ a ] q_a(z) = \sigma_a^{-1} \exp{\left[ -\frac{\gamma + z}{\sigma_a} \right]}
Linearity of Quadrature Rules
∑ i = 1 N ( α f ( x i ) + β g ( x i ) ) w i = α ∑ i = 1 N f ( x i ) w i + β ∑ i = 1 N g ( x i ) w i \sum_{i = 1}^N {\left( {\alpha f(x_i ) + \beta g(x_i )} \right)w_i } = \alpha \sum_{i = 1}^N {f(x_i )w_i } + \beta \sum_{i = 1}^N {g(x_i )w_i }
∫ a b ( α f ( x ) + β g ( x ) ) dx = α ∫ a b f ( x ) dx + β ∫ a b g ( x ) dx {\int_a^b {\left( {\alpha f(x)\, + \beta g(x)} \right)dx = } \alpha \int_a^b {f(x)\,dx} + \beta \int_a^b {g(x)\,dx} }
p 3 ( x ) = ( 1 2 ) ( x − 1 2 ) ( x − 3 4 ) ( x − 1 ) ( 1 4 − 1 2 ) ( 1 4 − 3 4 ) ( 1 4 − 1 ) + ( 1 2 ) ( x − 1 2 ) ( x − 3 4 ) ( x − 1 ) ( 1 4 − 1 2 ) ( 1 4 − 3 4 ) ( 1 4 − 1 ) + ( 1 2 ) ( x − 1 2 ) ( x − 3 4 ) ( x − 1 ) ( 1 4 − 1 2 ) ( 1 4 − 3 4 ) ( 1 4 − 1 ) + ( 1 2 ) ( x − 1 2 ) ( x − 3 4 ) ( x − 1 ) ( 1 4 − 1 2 ) ( 1 4 − 3 4 ) ( 1 4 − 1 ) p_3 (x) = \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} + \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} + \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} + \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}}
P 1 ( Y ) → P 1 ( X ) ↓ ⇓ ∼ ↓ T ′ → T
\begin{matrix}
P_1(Y) &\to& P_1(X) \\
\downarrow &\Downarrow\mathrlap{\sim}& \downarrow \\
T' &\to& T
\end{matrix}
\mathcal{} versus \mathscr{}𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵 versus 𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵
\begin{gathered}
\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\
\text{versus}\\
\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\end{gathered}
(11)
A_n Quiver
Layer 1
v
1
v_1
v
2
v_2
v
n
1
v_{n_1}
≡ ( U ( k ) n 1 , { v i } )
\array{\arrayopts{\align{center}}
\begin{svg}
<svg width="108" height="122" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="91165">
<desc>A_n Quiver</desc>
<g>
<title>Layer 1</title>
<g fill="none" stroke="black" id="svg_91165_1">
<path d="m55.888885,27l25,20l0,30l-25,20l-24.999996,-20l0,-30l24.999996,-20z" id="svg_91165_2"/>
<g stroke-dasharray="2" id="svg_91165_3">
<path d="m55.888885,2l0,25" id="svg_91165_4"/>
<path d="m80.888885,47l25,-20" id="svg_91165_5"/>
<path d="m80.888885,77l25,20" id="svg_91165_6"/>
<path d="m55.888885,97l0,25" id="svg_91165_7"/>
<path d="m30.888889,77l-25,20" id="svg_91165_8"/>
<path d="m30.888889,47l-25,-20" id="svg_91165_9"/>
</g>
</g>
<g fill="red" id="svg_91165_10">
<circle cx="55.888889" cy="27" r="4" id="svg_91165_11"/>
<circle cx="80.888889" cy="47" r="4" id="svg_91165_12"/>
<circle cx="80.888889" cy="77" r="4" id="svg_91165_13"/>
<circle cx="55.888889" cy="97" r="4" id="svg_91165_14"/>
<circle cx="30.888889" cy="77" r="3.999999" id="svg_91165_15"/>
<circle cx="30.888889" cy="47" r="3.999999" id="svg_91165_16"/>
</g>
<foreignObject font-size="16" x="39.638889" y="0" width="16" height="26" id="svg_91165_17">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>v</mi>
<mn>1</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">v_1</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject font-size="16" x="75.888889" y="15.25" width="16" height="26" id="svg_91165_18">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>v</mi>
<mn>2</mn>
</msub>
</mrow>
<annotation encoding="application/x-tex">v_2</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="0.888889" y="27" width="20" height="29" id="svg_91165_19" font-size="16">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<msub>
<mi>v</mi>
<mrow>
<msub>
<mi>n</mi>
<mn>1</mn>
</msub>
</mrow>
</msub>
</mrow>
<annotation encoding="application/x-tex">v_{n_1}</annotation>
</semantics>
</math>
</foreignObject>
</g>
</svg>
\end{svg}
} \equiv \left({U(k)}^{n_1},\{v_i\}\right)
“This is my text ”, says Anymouse.
Ruby code example:
class Person
attr_reader :name , :age
def initialize ( name , age )
@name , @age = name , age
end
def <=> ( person )
@age <=> person . age
end
def to_s
" #@name (#@age )"
end
end
group = [
Person . new (" Bob ", 33 ),
Person . new (" Chris ", 16 ),
Person . new (" Ash ", 23 )
]
puts group . sort . reverse
A Python example:
ListOfStrings(
title = _("A List of some strings"),
help = _("A List of strings"),
orientation = "horizontal"
)
Tikz Pictures
A new Tikz feature to play around with. Requires an feature? to play around with. Requires an additional install (in addition to Instiki) to render the Tikz code into SVG.
Here’s an example of some Tikz code
\begin{tikzpicture}[decoration={markings,
mark=at position .5 with {\arrow{>}}}]
\usetikzlibrary{arrows,shapes,decorations.markings}
\begin{scope}[scale=2.0]
\node[Bl,scale=.75] (or1) at (8,3) {};
\node[scale=1] at (8.7,2.9) {$D3$ brane};
\node[draw,diamond,fill=yellow,scale=.3] (A1) at (7,0) {};
\draw[dashed] (A1) -- (7,-.7);
\node[draw,diamond,fill=yellow,scale=.3] (A2) at (7.5,0) {};
\draw[dashed] (A2) -- (7.5,-.7);
\node[draw,diamond,fill=yellow,scale=.3] (A3) at (8,0) {};
\draw[dashed] (A3) -- (8,-.7);
\node[draw,diamond,fill=yellow,scale=.3] (A4) at (8.5,0) {};
\draw[dashed] (A4) -- (8.5,-.7);
\node[draw,diamond,fill=yellow,scale=.3] (A5) at (9,0) {};
\draw[dashed] (A5) -- (9,-.7);
\node[draw,circle,fill=aqua,scale=.3] (B) at (9.5,0) {};
\draw[dashed] (B) -- (9.5,-.7);
\node[draw,regular polygon,regular polygon sides=5,fill=purple,scale=.3] (C1) at (10,0) {};
\draw[dashed] (C1) -- (10,-.7);
\node[draw,regular polygon,regular polygon sides=5,fill=purple,scale=.3] (C2) at (10.5,0) {};
\draw[dashed] (C2) -- (10.5,-.7);
\draw (6.8,-.7) -- (6.8,-.9) to (9.2,-.9) to (9.2,-.7);
\draw (9.8,-.7) -- (9.8,-.9) to (10.7,-.9) to (10.7,-.7);
\draw[->-=.75] (C2) to (10.2,.35);
\draw[->-=.75] (C1) to (10.2,.35);
\node[scale=.6] at (9.9,.35) {$(2,2)$};
\draw[->-=.7] (B) to (9.6,.7);
\draw (10.2,.35) to (9.6,.7);
\node[scale=.6] at (9.35,.9) {$(4,0)$};
\draw[->-=.5] (9.1,.8) to (A5);
\draw (9.6,.7) to (9.1,.8) to (A5);
\draw (9.1,.8) to [out=170,in=280] (8.3,1.45);
\draw[dashed] (8.3,1.45) to (8.1,2.5);
\draw[->-=.5] (8.1,2.5) to (or1);
\node[scale=.75] at (7.7,2.7) {$(3,0)$};
%\draw (11.4,2.4) to [out=180,in=90] (6.2,-.5) to [out=90,in=0] (or1) -- cycle;
\node[scale=.75] at (8,-1.1) {A-type};
\node[scale=.75] at (9.5,-1.1) {B-type};
\node[scale=.75] at (10.25,-1.1) {C-type};
\draw[dashed] (8.7,.6) to [out=180,in=90] (6.2,-.55) to [out=270,in=180] (8.7,-1.6) to [out=0,in=270] (11.2,-.55) to [out=90,in=0] (8.7,.6) -- cycle;
\node[scale=1] at (12,.6) {$E_6$ singularity};
\end{scope}
\end{tikzpicture}
which, when processed, produces
\begin{tikzpicture}[decoration={markings, mark=at position .5 with {\arrow{>}}}] \usetikzlibrary{arrows,shapes,decorations.markings} \begin{scope}[scale=2.0] \nodeBl,scale=.75 at (8,3) {}; \node[scale=1] at (8.7,2.9) {D 3 D3 brane}; \nodedraw,diamond,fill=yellow,scale=.3 at (7,0) {}; \drawdashed – (7,-.7); \nodedraw,diamond,fill=yellow,scale=.3 at (7.5,0) {}; \drawdashed – (7.5,-.7); \nodedraw,diamond,fill=yellow,scale=.3 at (8,0) {}; \drawdashed – (8,-.7); \nodedraw,diamond,fill=yellow,scale=.3 at (8.5,0) {}; \drawdashed – (8.5,-.7); \nodedraw,diamond,fill=yellow,scale=.3 at (9,0) {}; \drawdashed – (9,-.7); \nodedraw,circle,fill=aqua,scale=.3 at (9.5,0) {}; \drawdashed – (9.5,-.7); \nodedraw,regular polygon,regular polygon sides=5,fill=purple,scale=.3 at (10,0) {}; \drawdashed – (10,-.7); \nodedraw,regular polygon,regular polygon sides=5,fill=purple,scale=.3 at (10.5,0) {}; \drawdashed – (10.5,-.7); \draw (6.8,-.7) – (6.8,-.9) to (9.2,-.9) to (9.2,-.7); \draw (9.8,-.7) – (9.8,-.9) to (10.7,-.9) to (10.7,-.7); \draw->-=.75 to (10.2,.35); \draw->-=.75 to (10.2,.35); \node[scale=.6] at (9.9,.35) {( 2 , 2 ) (2,2) }; \draw->-=.7 to (9.6,.7); \draw (10.2,.35) to (9.6,.7); \node[scale=.6] at (9.35,.9) {( 4 , 0 ) (4,0) }; \draw->-=.5 to (A5); \draw (9.6,.7) to (9.1,.8) to (A5); \draw (9.1,.8) to out=170,in=280 ; \drawdashed to (8.1,2.5); \draw->-=.5 to (or1); \node[scale=.75] at (7.7,2.7) {( 3 , 0 ) (3,0) }; %\draw (11.4,2.4) to out=180,in=90 to out=90,in=0 – cycle; \node[scale=.75] at (8,-1.1) {A-type}; \node[scale=.75] at (9.5,-1.1) {B-type}; \node[scale=.75] at (10.25,-1.1) {C-type}; \drawdashed to out=180,in=90 to out=270,in=180 to out=0,in=270 to out=90,in=0 – cycle; \node[scale=1] at (12,.6) {E 6 E_6 singularity}; \end{scope} \end{tikzpicture}
And two more:
\begin{tikzpicture} \useasboundingbox (-4,-3) rectangle (4,4.75); \drawthick – (0,4) – ( 3.46410,-2) – (-3.46410,-2); \drawthick circle (2); \drawthick – (0,-2); \drawthick – ( 1.73205,1); \drawthick – (-1.73205,1); \filldraw (-1.73205,1) circle (3pt) node[anchor=south east, scale=1.5] {e 1 e_1 }; \filldraw ( 1.73205,1) circle (3pt) node[anchor=south west, scale=1.5] {e 2 e_2 }; \filldraw (0,-2) circle (3pt) node[anchor=north, scale=1.5] {e 3 e_3 }; \filldraw (0,0) circle (3pt) node[anchor=west, xshift=7pt, scale=1.5] {e 4 e_4 }; \filldraw (3.46410,-2) circle (3pt) node[anchor=north, scale=1.5] {e 5 e_5 }; \filldraw (-3.46410,-2) circle (3pt) node[anchor=north, scale=1.5] {e 6 e_6 }; \filldraw (0,4) circle (3pt) node[anchor=south, scale=1.5] {e 7 e_7 }; \end{tikzpicture}
\begin{tikzpicture}[every tqft/.style={fill=orange,fill opacity=0.25}, tqft/every boundary component/.style={fill=yellow,fill opacity=.5}, tqft/every upper boundary component/.style={draw,thin,blue}, tqft/every lower boundary component/.style={draw,dashed,thin,blue}] \usetikzlibrary{tqft} \begin{scope}[tqft/every incoming boundary component/.style={fill=green, fill opacity= .25}] \pic[tqft/pair of pants,draw,name=a,at={(0,0)}]; \pic[tqft/reverse pair of pants,draw,anchor=incoming boundary 2,name=e,at={(8,0)}]; \end{scope} \begin{scope}[tqft/every outgoing boundary component/.style={draw,thin,blue,fill=yellow}] \pic[tqft/reverse pair of pants,draw,anchor=incoming boundary 1,name=b,at=(a-outgoing boundary 2)]; \end{scope} \begin{scope}[tqft/every incoming boundary component/.style={fill=green, fill opacity= .25}] \pic[tqft/cylinder,draw,anchor=outgoing boundary 1,name=d,at=(b-incoming boundary 2)]; \end{scope} \path (b-incoming boundary 2) ++(1.5,0) node[font=\Huge] {(=)}; \begin{scope}[tqft/every outgoing boundary component/.style={draw,thin,blue,fill=yellow}] \pic[tqft/cylinder,draw,anchor=incoming boundary 1,name=c,at=(a-outgoing boundary 1)]; \pic[tqft/pair of pants,draw,anchor=incoming boundary 1,name=f,at=(e-outgoing boundary 1)]; \end{scope} \end{tikzpicture}
\begin{tikzpicture}\definecolor{mycolor}{RGB}{255,51,76}\drawcolor=mycolor circle (4ex);\end{tikzpicture}