[[!include contents]] ## Markdown+itex2MML Sandbox## {: #sandbox} Play around [below](#more). Your changes will, periodically, be rolled back. ### Some examples### {: #examples} \[ \label{objftn} \mathop{min} w_h p_h + w_r p_r + w_l p_l \] \[ \left\{ \begin{aligned} \nabla \times \vec{\mathbf{B}} - \frac{1}{c}\frac{\partial\vec{\mathbf{E}}}{\partial t} &= \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &= 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}+\frac{1}{c}\frac{\partial\vec{\mathbf{B}}}{\partial t} &= \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} &= 0 \end{aligned} \right. \] Here's an equation \[ \label{gaussian} {\int_{-\infty}^\infty e^{-a x^2/2} \mathrm{d}x} = \sqrt{\frac{2\pi}{a}} \] which we can later refer[^nb] back to as (eq:gaussian). [^nb]: You can also refer to it as \eqref{gaussian}. _Chacun à son goût!_{: xml-lang="fr"}. Aligned equations: \[\begin{aligned} a+b &= b+a \\ a+(b+c) &= (a+b)+c \end{aligned}\] The Dirac equation (boxed): $$ \boxed{(i\slash{D}+m)\psi = 0} $$ Here's the table of Clifford[^moreInfo] algebras over $\mathbb{R}$: [^moreInfo]: For more information, see [Wikipedia](http://en.wikipedia.org/wiki/Clifford_algebra). {:r: scope="row"} $j$|$0$|$1$|$2$|$3$|$4$|$5$|$6$|$7$|$8$ --:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| {:r}$\mathcal{C}\ell_{j}^-$|$\mathbb{R}$|$\mathbb{C}$|$\mathbb{H}$|$\mathbb{H}\oplus\mathbb{H}$|$\mathbb{H}(2)$|$\mathbb{C}(4)$|$\mathbb{R}(8)$|$\mathbb{R}(8)\oplus\mathbb{R}(8)$|$\mathbb{R}(16)$ {:r}$\mathcal{C}\ell_{j}^+$|$\mathbb{R}$|$\mathbb{R}\oplus\mathbb{R}$|$\mathbb{R}(2)$|$\mathbb{C}(2)$|$\mathbb{H}(2)$|$\mathbb{H}(2)\oplus\mathbb{H}(2)$|$\mathbb{H}(4)$|$\mathbb{C}(8)$|$\mathbb{R}(16)$ {: class="plaintable" style="text-align:center;margin-left:0;" summary="The Clifford Algebras"} where the generators of $\mathcal{C}\ell_{j}^\pm$ satisfy $$ \gamma_i\gamma_j +\gamma_j \gamma_i =\pm 2\delta_{i j} $$ and $\mathcal{C}\ell_{n+8}^\pm = \mathcal{C}\ell_n^\pm \otimes \mathbb{R}(16)$. \[ \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} \] \[ \mathbf{V}_{1} \times \mathbf{V}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\\\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \\ \end{vmatrix} \] ###More Examples### {: #more} \[\nabla \times \vec{E} = - \frac {\partial \vec{B}}{\partial t}\] \[ \label{Ampere} \oint \mathbf{B}\cdot \mathrm{d}\mathbf{l} = \href{https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_circuital_law}{\mu_0 I_\text{enc}} \] $H^1(\mathcal{Z}, \mathcal{O}(-k))$ Let $G=(V,E)$ be a graph, with $w:V\to [0,1]$ a weight function. \[\{Q_i, Q_j\} = \delta_{ij}\mathcal{H}.\] ### Theorems ### {: #theorems} +-- {: .un_defn} ###### Definition Let $H$ be a subgroup of a group $G$. A *left coset* of $H$ in $G$ is a subset of $G$ that is of the form $x H$, where $x \in G$ and $x H = \{ x h : h \in H \}$. Similarly a *right coset* of $H$ in $G$ is a subset of $G$ that is of the form $H x$, where $H x = \{ h x : h \in H \}$. =-- +-- {: .num_lemma #LeftCosetsDisjoint} ###### Lemma Let $H$ be a subgroup of a group $G$, and let $x$ and $y$ be elements of $G$. Suppose that $x H \cap y H$ is non-empty. Then $x H = y H$. =-- +-- {: .proof} ###### Proof Let $z$ be some element of $x H \cap y H$. Then $z = x a$ for some $a \in H$, and $z = y b$ for some $b \in H$. If $h$ is any element of $H$ then $a h \in H$ and $a^{-1}h \in H$, since $H$ is a subgroup of $G$. But $z h = x(a h)$ and $xh = z(a^{-1}h)$ for all $h \in H$. Therefore $z H \subset x H$ and $x H \subset z H$, and thus $x H = z H$. Similarly $y H = z H$, and thus $x H = y H$, as required. =-- +-- {: .num_lemma #SizeOfLeftCoset} ###### Lemma Let $H$ be a finite subgroup of a group $G$. Then each left coset of $H$ in $G$ has the same number of elements as $H$. =-- +-- {: .proof} ###### Proof Let $H = \{ h_1, h_2,\ldots, h_m\}$, where $h_1, h_2,\ldots, h_m$ are distinct, and let $x$ be an element of $G$. Then the left coset $x H$ consists of the elements $x h_j$ for $j = 1,2,\ldots,m$. Suppose that $j$ and $k$ are integers between $1$ and $m$ for which $x h_j = x h_k$. Then $h_j = x^{-1} (x h_j) = x^{-1} (x h_k) = h_k$, and thus $j = k$, since $h_1, h_2,\ldots, h_m$ are distinct. It follows that the elements $x h_1, x h_2,\ldots, x h_m$ are distinct. We conclude that the subgroup $H$ and the left coset $x H$ both have $m$ elements, as required. =-- +-- {: .num_theorem #Lagrange} ###### Theorem **(Lagrange's Theorem).** Let $G$ be a finite group, and let $H$ be a subgroup of $G$. Then the order of $H$ divides the order of $G$. =-- +-- {: .proof} ###### Proof Each element $x$ of $G$ belongs to at least one left coset of $H$ in $G$ (namely the coset $x H$), and no element can belong to two distinct left cosets of $H$ in $G$ (see Lemma \ref{LeftCosetsDisjoint}). Therefore every element of $G$ belongs to exactly one left coset of $H$. Moreover each left coset of $H$ contains $|H|$ elements (Lemma \ref{SizeOfLeftCoset}). Therefore $|G| = n |H|$, where $n$ is the number of left cosets of $H$ in $G$. The result follows. =-- +-- {: .num_cor #OrderDivides} ###### Corollary Let $x$ be an element of a finite group $G$. Then the order of $x$ divides the order of $G$. =-- +-- {: .num_theorem} ###### Theorem Let $f : \Delta \longrightarrow \Delta,$ where $\Delta=\{z\in\mathbb{C}: \vert z \vert \lt 1\}$, be analytic with $a \in \Delta$. Then $$ \left\vert\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}\right\vert\le \left\vert\frac{z-a}{1-\overline{a}z}\right\vert $$ for all $\vert z \vert \le 1$ and $$ \frac{\vert f'(a)\vert}{1-\vert f(a)\vert^2}\le \frac{1}{1-\vert a \vert^2}. $$ Furthermore, equality holds iff $f$ realizes a conformal mapping of $\Delta$ onto itself. =-- +-- {: .proof} ###### Proof Let $w=\frac{z-a}{1-\overline{a}z}$ and put $\phi(w)=\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}$. Define for $\abs{b}\lt 1$ $C_b(z)=\frac{z-b}{1-\overline{b}z}.$ All conformal maps from $\Delta$ to itself, sending $b$ to $0$, are of the form $C_b(z)e^{i\gamma}$ for $\gamma\in[0,2\pi].$ In this notation, $\phi(w)=C_{f(a)}\circ f \circ C_a^{-1}(w),$ where $C_a^{-1}$ is the inverse of $C_a$ as a function. Note that $C_a(z)$ is conformal, so it has an inverse. It is clear that $\phi(0)=C_{f(a)}\circ f \circ C_a^{-1}(0)=C_{f(a)}(f(a))=0$. Since $C_a^{-1}: \Delta \longrightarrow \Delta$ and $f : \Delta \longrightarrow \Delta$ and $C_{f(a)}: \Delta \longrightarrow \Delta,$ then $\vert\phi(w)\vert\lt 1$ for $\vert w\vert \lt 1 .$ Applying Schwarz's lemma, we obtain $\vert\phi(w)\vert\le \vert w \vert$ for $\vert w \vert \le 1$. Furthermore, if equality holds, then $f(z)=e^{i\gamma'} z$ for $\gamma'\in [0,2\pi]$. Therefore, \[ \label{eqn1} \left\vert\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}\right\vert\le \left\vert\frac{z-a}{1-\overline{a}z}\right\vert \] for all $\vert z \vert\le 1.$ Rearranging, we obtain $$ \left\vert\frac{f(z)-f(a)}{z-a}\right\vert\le\left\vert\frac{1-\overline{f(a)}f(z)}{1-\overline{a}z}\right\vert. $$ If we take the limit as $z$ tends to $a$, we obtain $$ \left\vert f'(a)\right\vert \le \left\vert\frac{1-\vert f(a)\vert ^2}{1-\vert a \vert^2}\right\vert=\frac{1-\vert f(a)\vert^2}{1-\vert a \vert^2}, $$ or $$ \frac{\vert f'(a)\vert}{1-\vert f(a)\vert^2}\le \frac{1}{1-\vert a \vert^2}. $$ As said above, if equality holds in (eq:eqn1), then Schwarz's lemma tells us that $\phi(w)=e^{i\gamma'}w$. Thus, $\phi(w)=C_{f(a)}\circ f \circ C_a^{-1}(w)=e^{i\gamma'}w,$ so $f(z)=C_{f(a)}^{-1}(e^{i\gamma'}C_a(z))$. Since $e^{i\gamma'}C_a(z)$ is conformal, $C_{f(a)}^{-1},$ the inverse function of $C_{f(a)}$, is conformal, and a composition of conformal maps is conformal, then $f$ is a conformal map of $\Delta$ onto itself. Conversely, if $f$ is a conformal map of $\Delta$ onto itself, then $\phi(w)=C_{f(a)}\circ f \circ C_a^{-1}(w)=e^{i\gamma}C_b(w),$ since a composition of conformal maps is conformal and because all conformal maps from $\Delta$ onto itself are of the form $e^{i\gamma}C_b(w).$ We also know that $\phi(0)=0,$ so $b=0$. Therefore, $$ \phi(w)=e^{i\gamma}C_0(w)=e^{i\gamma}w \Leftrightarrow \vert\phi(w)\vert=\vert w \vert \Leftrightarrow \left\vert\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}\right\vert=\left\vert\frac{z-a}{1-\overline{a}z}\right\vert $$ for all $\vert z \vert\le 1$. In sum, equality holds in (eq:eqn1) iff $f$ is a conformal map from $\Delta$ to itself. =-- +-- {: .num_remark} ###### Remark Someone needs to code \abs, i.e. \left\vert # \right\vert. This is terribly annoying. Also, when using $$, why must one enter a line before and after. =-- ####SVG graphics, created in SVG-Edit: +-- {: #TQFT style="text-align:center"} $$\begin{svg}<svg width="450" height="400" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="67492"> <defs> <marker refX="8" orient="auto" markerHeight="5" markerWidth="5" markerUnits="strokeWidth" refY="5" id="se_arrow_67492_fw1" viewBox="0 0 10 10"> <path id="svg_67492_23" fill="#000" d="m0,0l10,5l-10,5l5,-5l-5,-5z"/> </marker> </defs> <g class="layer"> <title>Layer 1</title> <polyline se:connector="svg_67492_7 svg_67492_8" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="296,279 345.5,316.125 395,353.25" id="svg_67492_22"/> <polyline se:connector="svg_67492_5 svg_67492_7" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="276.99,178 278.208,214 279.425,250" id="svg_67492_21"/> <polyline se:connector="svg_67492_6 svg_67492_7" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="179,268.156 212,267.779 245,267.401" id="svg_67492_20"/> <polyline se:connector="svg_67492_4 svg_67492_7" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="163.529,174 211.119,212 258.71,250" id="svg_67492_18"/> <polyline se:connector="svg_67492_4 svg_67492_5" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="173,162.287 206.5,162.68 240,163.072" id="svg_67492_17"/> <polyline se:connector="svg_67492_4 svg_67492_6" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="148.556,174 148.732,211.5 148.908,249" id="svg_67492_16"/> <polyline se:connector="svg_67492_1 svg_67492_3" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="70.1165,92 70.4757,129 70.835,166" id="svg_67492_15"/> <polyline se:connector="svg_67492_1 svg_67492_2" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="82,80.0462 128.5,80.225 175,80.4038" id="svg_67492_14"/> <polyline se:connector="svg_67492_2 svg_67492_5" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="211.982,93.5 235.255,118.75 258.527,144" id="svg_67492_13"/> <polyline se:connector="svg_67492_1 svg_67492_4" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="81.4878,92 106.857,118.5 132.226,145" id="svg_67492_11"/> <polyline se:connector="svg_67492_3 svg_67492_6" marker-end="url(#se_arrow_67492_fw1)" fill="none" stroke-width="2" stroke="#000" points="81.9474,195 106.579,222 131.211,249" id="svg_67492_10"/> <foreignObject height="24" width="24" font-size="16" id="svg_67492_1" y="68" x="58"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> <annotation encoding="application/x-tex">E_\Sigma</annotation> </semantics> </math> </foreignObject> <foreignObject height="26" width="40" font-size="16" id="svg_67492_2" y="67.5" x="180"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>E</mi> <mrow> <msub> <mi>Σ</mi> <mtext>out</mtext> </msub> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">E_{\Sigma_{\text{out}}}</annotation> </semantics> </math> </foreignObject> <foreignObject height="24" width="24" font-size="16" id="svg_67492_3" y="171" x="59"> <math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>E</mi> <mtext>in</mtext> </msub> </mrow> <annotation encoding="application/x-tex">E_{\text{in}}</annotation> </semantics> </math> </foreignObject> <foreignObject height="24" width="49" font-size="16" id="svg_67492_4" y="150" x="124"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mo stretchy="false">[</mo> <mi>Σ</mi> <mo>,</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mrow> <annotation encoding="application/x-tex">[\Sigma, X]</annotation> </semantics> </math> </foreignObject> <foreignObject height="29" width="63" font-size="16" id="svg_67492_5" y="149" x="245"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mo stretchy="false">[</mo> <msub> <mi>Σ</mi> <mtext>out</mtext> </msub> <mo>,</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mrow> <annotation encoding="application/x-tex">[\Sigma_{\text{out}}, X]</annotation> </semantics> </math> </foreignObject> <foreignObject height="29" width="60" font-size="16" id="svg_67492_6" y="254" x="119"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mo stretchy="false">[</mo> <msub> <mi>Σ</mi> <mtext>in</mtext> </msub> <mo>,</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mrow> <annotation encoding="application/x-tex">[\Sigma_{\text{in}}, X]</annotation> </semantics> </math> </foreignObject> <foreignObject height="24" width="60" font-size="16" id="svg_67492_7" y="255" x="250"> <math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>Bord</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">Bord(X)</annotation> </semantics> </math> </foreignObject> <foreignObject height="24" width="24" font-size="16" id="svg_67492_8" y="351" x="396"> <math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>V</mi> </mrow> <annotation encoding="application/x-tex">V</annotation> </semantics> </math> </foreignObject> <path marker-end="url(#se_arrow_67492_fw1)" stroke-width="2" stroke="#000000" fill="none" d="m303,177c37.30435,34.82927 93.82608,76.82927 104,168" id="svg_67492_35"/> <path marker-end="url(#se_arrow_67492_fw1)" stroke-width="2" stroke="#000000" fill="none" d="m162,281c67,70 143,83 230,83" id="svg_67492_36"/> <foreignObject x="115.5" y="55" id="svg_67492_99" font-size="16" width="35" height="24"> <math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>E</mi> <mtext>out</mtext> </msub> </mrow> <annotation encoding="application/x-tex">E_{\text{out}}</annotation> </semantics> </math> </foreignObject> <foreignObject height="24" width="31" font-size="16" id="svg_67492_98" y="197" x="123"> <math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mtext>in</mtext> </mrow> <annotation encoding="application/x-tex">\text{in}</annotation> </semantics> </math> </foreignObject> <foreignObject x="193" y="142" font-size="16" width="31" height="24" id="svg_67492_9"> <math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mtext>out</mtext> </mrow> <annotation encoding="application/x-tex">\text{out}</annotation> </semantics> </math> </foreignObject> <foreignObject x="179" y="328" id="svg_67492_12" font-size="16" width="85" height="29" transform="rotate(30.4258, 221.5, 342.5)"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>exp</mi> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mo>∇</mo> </msub> <mo stretchy="false">)</mo> <msub> <mo stretchy="false">|</mo> <mrow> <msub> <mi>Σ</mi> <mtext>in</mtext> </msub> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">\exp(S_\nabla)\vert_{\Sigma_{\text{in}}}</annotation> </semantics> </math> </foreignObject> <foreignObject transform="rotate(37.6477, 338.5, 328.5)" height="29" width="66" font-size="16" id="svg_67492_38" y="314" x="305.49998"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>exp</mi> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mo>∇</mo> </msub> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">\exp(S_\nabla)</annotation> </semantics> </math> </foreignObject> <foreignObject id="svg_67492_19" transform="rotate(49.3987, 365, 218)" height="29" width="96" font-size="16" y="203.5" x="317"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>exp</mi> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mo>∇</mo> </msub> <mo stretchy="false">)</mo> <msub> <mo stretchy="false">|</mo> <mrow> <msub> <mi>Σ</mi> <mtext>out</mtext> </msub> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">\exp(S_\nabla)\vert_{\Sigma_{\text{out}}}</annotation> </semantics> </math> </foreignObject> <foreignObject height="24" width="31" font-size="16" id="svg_67492_97" x="39" y="121"> <math display="inline" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>E</mi> <mtext>in</mtext> </msub> </mrow> <annotation encoding="application/x-tex">E_{\text{in}}</annotation> </semantics> </math> </foreignObject> </g> </svg>\end{svg} $$ =-- +-- {: #CommutativeCube} $$\begin{svg} <svg width="260" height="260" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="83381"> <desc>Commutative cube</desc> <defs> <marker refX="8" orient="auto" markerHeight="5" markerWidth="5" markerUnits="strokeWidth" refY="5" id="se_arrow_83381_fw4" viewBox="0 0 10 10"> <path fill="#666" d="m0,0l10,5l-10,5l5,-5l-5,-5z" id="svg_83381_2"/> </marker> <marker refX="8" orient="auto" markerHeight="5" markerWidth="5" markerUnits="strokeWidth" refY="5" id="se_arrow_83381_fw5" viewBox="0 0 10 10"> <path fill="#000" d="m0,0l10,5l-10,5l5,-5l-5,-5z" id="svg_83381_3"/> </marker> <linearGradient id="svg_83381_1" x1="0" y1="0" x2="1" y2="1"> <stop offset="0.25" stop-color="#888"/> <stop offset="1" stop-color="#000"/> </linearGradient> </defs> <g class="layer"> <title>Layer 1</title> <foreignObject y="3" x="2" width="20" height="24" font-size="16" id="svg_83381_4"> <math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> </mrow> <annotation encoding="application/x-tex">A_0</annotation> </semantics> </math> </foreignObject> <foreignObject y="3" x="156" width="20" height="24" font-size="16" id="svg_83381_5"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>C</mi> <mn>0</mn> </msub> </mrow> <annotation encoding="application/x-tex">C_0</annotation> </semantics> </math> </foreignObject> <foreignObject y="160" x="2" width="20" height="24" font-size="16" id="svg_83381_6"> <math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mn>1</mn> </msub> </mrow> <annotation encoding="application/x-tex">A_1</annotation> </semantics> </math> </foreignObject> <foreignObject y="160" x="156" width="20" height="24" font-size="16" id="svg_83381_7"> <math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> </mrow> <annotation encoding="application/x-tex">C_1</annotation> </semantics> </math> </foreignObject> <foreignObject y="80" x="80" width="20" height="24" font-size="16" id="svg_83381_8"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>B</mi> <mn>0</mn> </msub> </mrow> <annotation encoding="application/x-tex">B_0</annotation> </semantics> </math> </foreignObject> <foreignObject y="80" x="234" width="20" height="24" font-size="16" id="svg_83381_9"> <math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline"> <semantics> <mrow> <msub> <mi>D</mi> <mn>0</mn> </msub> </mrow> <annotation encoding="application/x-tex">D_0</annotation> </semantics> </math> </foreignObject> <foreignObject y="237" x="80" width="20" height="24" font-size="16" id="svg_83381_10"> <math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mn>1</mn> </msub> </mrow> <annotation encoding="application/x-tex">B_1</annotation> </semantics> </math> </foreignObject> <foreignObject y="237" x="234" width="20" height="24" font-size="16" id="svg_83381_11"> <math xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" display="inline"> <semantics> <mrow> <msub> <mi>D</mi> <mn>1</mn> </msub> </mrow> <annotation encoding="application/x-tex">D_1</annotation> </semantics> </math> </foreignObject> <line marker-end="url(#se_arrow_83381_fw4)" y2="160" x2="10" y1="30" x1="10" fill="none" stroke-width="2" stroke="#666" id="svg_83381_12"/> <line marker-end="url(#se_arrow_83381_fw4)" y2="172" x2="150" y1="172" x1="25" fill="none" stroke-width="2" stroke="#666" id="svg_83381_13"/> <line marker-end="url(#se_arrow_83381_fw4)" y2="14" x2="150" y1="14" x1="25" fill="none" stroke-width="2" stroke="#666" id="svg_83381_14"/> <line marker-end="url(#se_arrow_83381_fw4)" y2="160" x2="165" y1="30" x1="165" fill="none" stroke-width="2" stroke="#666" id="svg_83381_15"/> <line marker-end="url(#se_arrow_83381_fw5)" y2="235" x2="90" y1="105" x1="90" fill="none" stroke-width="2" stroke="#000" id="svg_83381_16"/> <line marker-end="url(#se_arrow_83381_fw5)" y2="248" x2="225" y1="248" x1="105" fill="none" stroke-width="2" stroke="#000" id="svg_83381_17"/> <line marker-end="url(#se_arrow_83381_fw5)" y2="90" x2="225" y1="90" x1="105" fill="none" stroke-width="2" stroke="#000" id="svg_83381_18"/> <line marker-end="url(#se_arrow_83381_fw5)" y2="235" x2="243" y1="105" x1="243" fill="none" stroke-width="2" stroke="#000" id="svg_83381_19"/> <line marker-end="url(#se_arrow_83381_fw5)" y2="80" x2="78" y1="25" x1="20" fill="none" stroke-width="2" stroke="url(#svg_83381_1)" id="svg_83381_20"/> <line marker-end="url(#se_arrow_83381_fw5)" y2="80" x2="233" y1="25" x1="175" fill="none" stroke-width="2" stroke="url(#svg_83381_1)" id="svg_83381_21"/> <line marker-end="url(#se_arrow_83381_fw5)" y2="240" x2="78" y1="185" x1="20" fill="none" stroke-width="2" stroke="url(#svg_83381_1)" id="svg_83381_22"/> <line marker-end="url(#se_arrow_83381_fw5)" y2="240" x2="233" y1="185" x1="175" fill="none" stroke-width="2" stroke="url(#svg_83381_1)" id="svg_83381_23"/> </g> </svg> \end{svg} $$ =-- +-- {: #box_diagram style="text-align:center; overflow: auto;"} <svg width="480" height="230" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="94113"> <desc>Box diagram</desc> <defs> <marker id="se_arrow_94113_fw" markerHeight="5" markerUnits="strokeWidth" markerWidth="5" orient="auto" refX="5" refY="5" viewBox="0 0 10 10"> <path d="m0,0l10,5l-10,5l5,-5l-5,-5z" fill="#000000" id="svg_94113_5"/> </marker> </defs> <g class="layer"> <foreignObject font-size="16" height="22" id="svg_94113_6" width="32" x="229" y="193"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msup> <mi>W</mi> <mo>+</mo> </msup> </mrow> <annotation encoding="application/x-tex">W^+</annotation> </semantics> </math> </foreignObject> <foreignObject font-size="16" height="22" id="svg_94113_7" width="32" x="230" y="17"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msup> <mi>W</mi> <mo>−</mo> </msup> </mrow> <annotation encoding="application/x-tex">W^-</annotation> </semantics> </math> </foreignObject> <foreignObject font-size="16" height="22" id="svg_94113_8" width="16" x="4" y="177"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mover> <mi>s</mi> <mo>¯</mo> </mover> </mrow> <annotation encoding="application/x-tex">\overline{s}</annotation> </semantics> </math> </foreignObject> <foreignObject font-size="16" height="20" id="svg_94113_9" width="20" x="460" y="177"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mover> <mi>d</mi> <mo>¯</mo> </mover> </mrow> <annotation encoding="application/x-tex">\overline{d}</annotation> </semantics> </math> </foreignObject> <title>Layer 1</title> <foreignObject font-size="16" height="20" id="svg_94113_1" width="20" x="460" y="28"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>s</mi> </mrow> <annotation encoding="application/x-tex">s</annotation> </semantics> </math> </foreignObject> <foreignObject font-size="16" height="20" id="svg_94113_2" width="20" x="4" y="28"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>d</mi> </mrow> <annotation encoding="application/x-tex">d</annotation> </semantics> </math> </foreignObject> <path d="m20,40l75,0l75,0" fill="none" id="svg_94113_10" marker-mid="url(#se_arrow_94113_fw)" stroke="#000000" stroke-width="2"/> <path d="m170,40l0,70l0,80" fill="none" id="svg_94113_11" marker-mid="url(#se_arrow_94113_fw)" stroke="#000000" stroke-width="2"/> <path d="m170,190l-75,0l-75,0" fill="none" id="svg_94113_12" marker-mid="url(#se_arrow_94113_fw)" stroke="#000000" stroke-width="2"/> <foreignObject font-size="16" height="20" id="svg_94113_3" width="52" x="110" y="104"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>u</mi> <mo>,</mo> <mspace width="0.16667em"/> <mi>c</mi> <mo>,</mo> <mspace width="0.16667em"/> <mi>t</mi> </mrow> <annotation encoding="application/x-tex">u,\, c,\, t</annotation> </semantics> </math> </foreignObject> <path d="m170,40c10,10 10,-10 20,0s10,-10 20,0s10,-10 20,0s10,-10 20,0s10,-10 20,0s10,-10 20,0s10,-10 20,0" fill="none" id="svg_94113_13" stroke="#000000" stroke-width="2"/> <path d="m460,190l-75,0l-75,0" fill="black" id="svg_94113_14" marker-mid="url(#se_arrow_94113_fw)" stroke="#000000" stroke-width="2"/> <path d="m310,190l0,-70l0,-80" fill="black" id="svg_94113_15" marker-mid="url(#se_arrow_94113_fw)" stroke="#000000" stroke-width="2"/> <path d="m310,40l75,0l75,0" fill="black" id="svg_94113_16" marker-mid="url(#se_arrow_94113_fw)" stroke="#000000" stroke-width="2"/> <path d="m170,190c10,10 10,-10 20,0s10,-10 20,0s10,-10 20,0s10,-10 20,0s10,-10 20,0s10,-10 20,0s10,-10 20,0" fill="none" id="svg_94113_17" stroke="#000000" stroke-width="2"/> <foreignObject font-size="16" height="20" id="svg_94113_4" width="52" x="315" y="104"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>u</mi> <mo>,</mo> <mspace width="0.16667em"/> <mi>c</mi> <mo>,</mo> <mspace width="0.16667em"/> <mi>t</mi> </mrow> <annotation encoding="application/x-tex">u,\, c,\, t</annotation> </semantics> </math> </foreignObject> </g> </svg><br /> $K^0\overline{K}^0$ Mixing =-- ####Yet More examples * SVG: <div style="margin: 10px 10px 10px 10em;width:6em;height:6em;"> <svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="0 0 100 100"> <g stroke-width="5" fill="none"> <g stroke="#fa3"> <circle r="6" cx="24" cy="16"/> <circle r="6" cx="51" cy="88"/> <path d="M35,39a16,16 0,1,0 4-5l-11-13M50,62l1,20"/> </g> <g stroke="#a38"> <circle r="6" cx="72" cy="13"/> <path d="M37,23a27,27 0,0,1 39,24M68,18l-5,7"/> </g> <g stroke="#e33"> <circle r="6" cx="49" cy="46"/> <circle r="6" cx="11" cy="62"/> <circle r="6" cx="89" cy="58"/> <path d="M16,60l8-4M56,73a27,27 0,0,0 19-19l8,2M45,73a27,27 0,0,1-17-43"/> </g> </g> </svg> </div> * Animated SVG {: #SVGanimation} <svg width="8cm" height="3cm" viewBox="0 0 800 300" xmlns="http://www.w3.org/2000/svg" version="1.1"> <desc>Example anim01 - demonstrate animation elements</desc> <rect x="1" y="1" width="798" height="298" fill="none" stroke="blue" stroke-width="2" /> <rect id="RectElement" x="300" y="100" width="300" height="100" fill="rgb(255,255,0)" > <animate id="fooanim" attributeName="x" attributeType="XML" begin="0s" dur="9s" fill="freeze" from="300" to="0" repeatCount="indefinite"/> <animate attributeName="y" attributeType="XML" begin="0s" dur="9s" fill="freeze" from="100" to="0" repeatCount="indefinite"/> <animate attributeName="width" attributeType="XML" begin="0s" dur="9s" fill="freeze" from="300" to="800" repeatCount="indefinite"/> <animate attributeName="height" attributeType="XML" begin="0s" dur="9s" fill="freeze" from="100" to="300" repeatCount="indefinite"/> </rect> <g transform="translate(100,100)" > <g id="TextElement"> <foreignObject markdown='1' x="0" y="0" width="186" height="49" font-size="20"> ${\int_{-\infty}^{\infty}e^{-a x^2}d x}=\sqrt{\tfrac{\pi}{a}}$ </foreignObject> <animateTransform attributeName="transform" attributeType="XML" type="scale" additive="sum" keyTimes="0;.333;1" values="1;1;3" begin="0s" dur="9s" fill="freeze" repeatCount="indefinite" /> <animate attributeName="visibility" attributeType="CSS" keyTimes="0;.333;1" values="hidden;visible;hidden" begin="0s" dur="9s" fill="freeze" repeatCount="indefinite" /> <animateMotion value="0,0;0,0;100,40" keyTimes="0;.333;1" begin="0s" dur="9s" fill="freeze" repeatCount="indefinite" /> <animate attributeName="color" attributeType="CSS" values="#0000FF;#0000FF;#880000" keyTimes="0;.333;1" begin="0s" dur="9s" fill="freeze" repeatCount="indefinite" /> <animateTransform attributeName="transform" attributeType="XML" type="rotate" values="-30;-30;0" keyTimes="0;.333;1" additive="sum" begin="0s" dur="9s" fill="freeze" repeatCount="indefinite" /> </g> </g> </svg> * Complicated commutative diagrams (equations in SVG) <svg xmlns="http://www.w3.org/2000/svg" width="18.75em" height="17.5em" viewBox="-30 -25 270 255"> <desc>Complicated commutative diagram, realized in SVG</desc> <defs> <marker id="svg295arrowhead" viewBox="0 0 10 10" refX="0" refY="5" markerUnits="strokeWidth" markerWidth="8" markerHeight="5" orient="auto"> <path d="M 0 0 L 10 5 L 0 10 z"/> </marker> <marker id="svg296arrowhead" viewBox="0 0 10 10" refX="0" refY="5" markerUnits="strokeWidth" markerWidth="6" markerHeight="4" orient="auto"> <path d="M 0 0 L 10 5 L 0 10 z"/> </marker> </defs> <g font-size="14"> <foreignObject markdown='1' x="53" y="-11" width="16" height="22">$1$</foreignObject> <foreignObject markdown='1' x="155" y="-11" width="16" height="22">$1$</foreignObject> <foreignObject markdown='1' x="53" y="192" width="16" height="22">$1$</foreignObject> <foreignObject markdown='1' x="155" y="192" width="16" height="22">$1$</foreignObject> <foreignObject markdown='1' x="220" y="90" width="16" height="22">$Id$</foreignObject> <foreignObject markdown='1' x="-18" y="90" width="16" height="22">$Id$</foreignObject> <foreignObject markdown='1' x="52" y="90" width="16" height="22">$A$</foreignObject> <foreignObject markdown='1' x="155" y="90" width="16" height="22">$B$</foreignObject> <foreignObject markdown='1' x="115" y="90" width="16" height="22">$\rho$</foreignObject> <foreignObject markdown='1' x="97" y="-19" width="16" height="22">$H$</foreignObject> <foreignObject markdown='1' x="97" y="204" width="16" height="22">$H$</foreignObject> <foreignObject markdown='1' x="104" y="46" width="16" height="22">$K$</foreignObject> <foreignObject markdown='1' x="100" y="137" width="16" height="22">$K'$</foreignObject> <foreignObject markdown='1' x="92" y="21" width="18" height="22">$\phi_1$</foreignObject> <foreignObject markdown='1' x="110" y="159" width="18" height="22">$\phi_2$</foreignObject> <foreignObject markdown='1' x="31" y="36" width="22" height="22">$N_A$</foreignObject> <foreignObject markdown='1' x="163" y="36" width="22" height="22">$N_B$</foreignObject> <foreignObject markdown='1' x="32" y="134" width="24" height="24">$N^\vee_A$</foreignObject> <foreignObject markdown='1' x="162" y="134" width="24" height="24">$N^\vee_B$</foreignObject> </g> <g fill="none" stroke="#000"> <g marker-end="url(#svg295arrowhead)"> <path d="M64.3,1H137"/> <path d="M159,11v67"/> <path d="M159,112.3v68"/> <path d="M56.3,112v68"/> <path d="M65,204.3h72"/> <path d="M56.3,11.3v67"/> <path d="M168.3,9c0,0,46,39.3,46,92.7s-36.7,85-36.7,85"/> <path d="M48,8.7c0,0-47,44.3-47,94s37.3,84,37.3,84"/> <path d="M63.3,112c0,0,16,27.3,44.7,27s39-20.6,39-20.6"/> <path d="M63.3,93.3C63.3,93.3,84,66,108,66s39,20.6,39,20.6"/> </g> <g stroke-width="2"> <path stroke-width="4" d="M43,102.7H19.3"/> <path stroke="#FFF" d="M43,102.7H19.3" marker-end="url(#svg296arrowhead)"/> <path stroke-width="4" d="M205,102.7h-22"/> <path stroke="#FFF" d="M205,102.7h-22" marker-end="url(#svg296arrowhead)"/> <path stroke-width="4" d="M146,15.5l-72,55"/> <path stroke="#FFF" d="M146,15.5l-72,55" marker-end="url(#svg296arrowhead)"/> <path stroke-width="4" d="M147,126l-72,65"/> <path stroke="#FFF" d="M147,126l-72,65" marker-end="url(#svg296arrowhead)"/> <path stroke-width="4" d="M108,75v46"/> <path stroke="#FFF" d="M108,75v46" marker-end="url(#svg296arrowhead)"/> </g> </g> </svg> * SVG in equations. In $SU(3)$, $\begin{svg} <svg xmlns="http://www.w3.org/2000/svg" width="30" height="16" viewBox="0 0 30 16"> <desc>Rank-2 Symmetric Tensor Representation</desc> <g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2"> <rect width="10" height="10"/> <rect width="10" height="10" x="10"/> </g> </svg> \end{svg}\includegraphics[width=2em]{young1} \otimes \begin{svg} <svg xmlns="http://www.w3.org/2000/svg" width="20" height="16" viewBox="0 0 20 16"> <desc>Fundamental Representation</desc> <g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2"> <rect width="10" height="10"/> </g> </svg> \end{svg}\includegraphics[width=1em]{young2} = \begin{svg} <svg xmlns="http://www.w3.org/2000/svg" width="30" height="26" viewBox="0 0 30 26"> <desc>Adjoint Representation</desc> <g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2"> <rect width="10" height="10"/> <rect width="10" height="10" x="10"/> <rect width="10" height="10" y="10"/> </g> </svg> \end{svg}\includegraphics[width=2em]{young3} \oplus \begin{svg} <svg xmlns="http://www.w3.org/2000/svg" width="40" height="16" viewBox="0 0 40 16"> <desc>Rank-3 Symmetric Tensor Representation</desc> <g transform="translate(5,5)" fill="#FCC" stroke="#000" stroke-width="2"> <rect width="10" height="10"/> <rect width="10" height="10" x="10"/> <rect width="10" height="10" x="20"/> </g> </svg> \end{svg}\includegraphics[width=3em]{young4}$. * Cases: $$ r_{a+1} = \begin{cases} 0 & \text{with prob.}\quad \exp(-\theta r_a) \\ \max \lbrace \delta r_a, z \rbrace & \text{with prob.}\quad 1 - \exp(-\theta r_a) \end{cases} $$ * Stretchy Brackets: $$q_a(z) = \sigma_a^{-1} \exp{\left[ -\frac{\gamma + z}{\sigma_a} \right]}$$ * Linearity of Quadrature Rules $$\sum_{i = 1}^N {\left( {\alpha f(x_i ) + \beta g(x_i )} \right)w_i } = \alpha \sum_{i = 1}^N {f(x_i )w_i } + \beta \sum_{i = 1}^N {g(x_i )w_i } $$ * Linearity of Integrals $${\int_a^b {\left( {\alpha f(x)\, + \beta g(x)} \right)dx = } \alpha \int_a^b {f(x)\,dx} + \beta \int_a^b {g(x)\,dx} }$$ * Can we talk about $x_i^2$ inline? What about $\int_a^b x^2\,dx$? Inline fractions $\frac{x-x_2}{x_1-x_2}$? * Big fractions $$p_3 (x) = \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} + \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} + \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} + \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} $$ * Diagram $$ \begin{matrix} P_1(Y) &\to& P_1(X) \\ \downarrow &\Downarrow\mathrlap{\sim}& \downarrow \\ T' &\to& T \end{matrix} $$ * \mathcal{} versus \mathscr{} $$ \begin{gathered} \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ \text{versus}\\ \mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \end{gathered} $$ *** \[\label{quiver} \array{\arrayopts{\align{center}} \begin{svg} <svg width="108" height="122" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="91165"> <desc>A_n Quiver</desc> <g> <title>Layer 1</title> <g fill="none" stroke="black" id="svg_91165_1"> <path d="m55.888885,27l25,20l0,30l-25,20l-24.999996,-20l0,-30l24.999996,-20z" id="svg_91165_2"/> <g stroke-dasharray="2" id="svg_91165_3"> <path d="m55.888885,2l0,25" id="svg_91165_4"/> <path d="m80.888885,47l25,-20" id="svg_91165_5"/> <path d="m80.888885,77l25,20" id="svg_91165_6"/> <path d="m55.888885,97l0,25" id="svg_91165_7"/> <path d="m30.888889,77l-25,20" id="svg_91165_8"/> <path d="m30.888889,47l-25,-20" id="svg_91165_9"/> </g> </g> <g fill="red" id="svg_91165_10"> <circle cx="55.888889" cy="27" r="4" id="svg_91165_11"/> <circle cx="80.888889" cy="47" r="4" id="svg_91165_12"/> <circle cx="80.888889" cy="77" r="4" id="svg_91165_13"/> <circle cx="55.888889" cy="97" r="4" id="svg_91165_14"/> <circle cx="30.888889" cy="77" r="3.999999" id="svg_91165_15"/> <circle cx="30.888889" cy="47" r="3.999999" id="svg_91165_16"/> </g> <foreignObject font-size="16" x="39.638889" y="0" width="16" height="26" id="svg_91165_17"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> <annotation encoding="application/x-tex">v_1</annotation> </semantics> </math> </foreignObject> <foreignObject font-size="16" x="75.888889" y="15.25" width="16" height="26" id="svg_91165_18"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> <annotation encoding="application/x-tex">v_2</annotation> </semantics> </math> </foreignObject> <foreignObject x="0.888889" y="27" width="20" height="29" id="svg_91165_19" font-size="16"> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"> <semantics> <mrow> <msub> <mi>v</mi> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">v_{n_1}</annotation> </semantics> </math> </foreignObject> </g> </svg> \end{svg} } \equiv \left({U(k)}^{n_1},\{v_i\}\right) \] "This is **my text**", says Anymouse. Ruby code example: ~~~~~~~~~~ {: lang=ruby} class Person attr_reader :name, :age def initialize(name, age) @name, @age = name, age end def <=>(person) # Comparison operator for sorting @age <=> person.age end def to_s "#@name (#@age)" end end group = [ Person.new("Bob", 33), Person.new("Chris", 16), Person.new("Ash", 23) ] puts group.sort.reverse ~~~~~~~~~~ A Python example: {: #python} ~~~~~~{: lang=python} ListOfStrings( title = _("A List of some strings"), help = _("A List of strings"), orientation = "horizontal" ) ~~~~~~ ## Tikz Pictures ## {: #tikz} A new [[Tikz|feature]] to play around with. Requires an [additional install](https://github.com/distler/tex2svg) (in addition to Instiki) to render the Tikz code into SVG. +--{.centered} \begin{tikzpicture}[decoration={markings, mark=at position .5 with {\arrow{>}}}] \usetikzlibrary{arrows,shapes,decorations.markings} \begin{scope}[scale=2.0] \node[Bl,scale=.75] (or1) at (8,3) {}; \node[scale=1] at (8.7,2.9) {$D3$ brane}; \node[draw,diamond,fill=yellow,scale=.3] (A1) at (7,0) {}; \draw[dashed] (A1) -- (7,-.7); \node[draw,diamond,fill=yellow,scale=.3] (A2) at (7.5,0) {}; \draw[dashed] (A2) -- (7.5,-.7); \node[draw,diamond,fill=yellow,scale=.3] (A3) at (8,0) {}; \draw[dashed] (A3) -- (8,-.7); \node[draw,diamond,fill=yellow,scale=.3] (A4) at (8.5,0) {}; \draw[dashed] (A4) -- (8.5,-.7); \node[draw,diamond,fill=yellow,scale=.3] (A5) at (9,0) {}; \draw[dashed] (A5) -- (9,-.7); \node[draw,circle,fill=aqua,scale=.3] (B) at (9.5,0) {}; \draw[dashed] (B) -- (9.5,-.7); \node[draw,regular polygon,regular polygon sides=5,fill=purple,scale=.3] (C1) at (10,0) {}; \draw[dashed] (C1) -- (10,-.7); \node[draw,regular polygon,regular polygon sides=5,fill=purple,scale=.3] (C2) at (10.5,0) {}; \draw[dashed] (C2) -- (10.5,-.7); \draw (6.8,-.7) -- (6.8,-.9) to (9.2,-.9) to (9.2,-.7); \draw (9.8,-.7) -- (9.8,-.9) to (10.7,-.9) to (10.7,-.7); \draw[->-=.75] (C2) to (10.2,.35); \draw[->-=.75] (C1) to (10.2,.35); \node[scale=.6] at (9.9,.35) {$(2,2)$}; \draw[->-=.7] (B) to (9.6,.7); \draw (10.2,.35) to (9.6,.7); \node[scale=.6] at (9.35,.9) {$(4,0)$}; \draw[->-=.5] (9.1,.8) to (A5); \draw (9.6,.7) to (9.1,.8) to (A5); \draw (9.1,.8) to [out=170,in=280] (8.3,1.45); \draw[dashed] (8.3,1.45) to (8.1,2.5); \draw[->-=.5] (8.1,2.5) to (or1); \node[scale=.75] at (7.7,2.7) {$(3,0)$}; %\draw (11.4,2.4) to [out=180,in=90] (6.2,-.5) to [out=90,in=0] (or1) -- cycle; \node[scale=.75] at (8,-1.1) {A-type}; \node[scale=.75] at (9.5,-1.1) {B-type}; \node[scale=.75] at (10.25,-1.1) {C-type}; \draw[dashed] (8.7,.6) to [out=180,in=90] (6.2,-.55) to [out=270,in=180] (8.7,-1.6) to [out=0,in=270] (11.2,-.55) to [out=90,in=0] (8.7,.6) -- cycle; \node[scale=1] at (12,.6) {$E_6$ singularity}; \end{scope} \end{tikzpicture} =-- And two more: +--{.centered} +--{: style="float:left"} \begin{tikzpicture} \useasboundingbox (-4,-3) rectangle (4,4.75); \draw[thick] (-3.46410,-2) -- (0,4) -- ( 3.46410,-2) -- (-3.46410,-2); \draw[thick] (0,0) circle (2); \draw[thick] (0,4) -- (0,-2); \draw[thick] (-3.46410,-2) -- ( 1.73205,1); \draw[thick] ( 3.46410,-2) -- (-1.73205,1); \filldraw (-1.73205,1) circle (3pt) node[anchor=south east, scale=1.5] {$e_1$}; \filldraw ( 1.73205,1) circle (3pt) node[anchor=south west, scale=1.5] {$e_2$}; \filldraw (0,-2) circle (3pt) node[anchor=north, scale=1.5] {$e_3$}; \filldraw (0,0) circle (3pt) node[anchor=west, xshift=7pt, scale=1.5] {$e_4$}; \filldraw (3.46410,-2) circle (3pt) node[anchor=north, scale=1.5] {$e_5$}; \filldraw (-3.46410,-2) circle (3pt) node[anchor=north, scale=1.5] {$e_6$}; \filldraw (0,4) circle (3pt) node[anchor=south, scale=1.5] {$e_7$}; \end{tikzpicture} =-- +--{: style="float:left; margin-left:3em; margin-top: 3em;"} \begin{tikzpicture}[every tqft/.style={fill=orange,fill opacity=0.25}, tqft/every boundary component/.style={fill=yellow,fill opacity=.5}, tqft/every upper boundary component/.style={draw,thin,blue}, tqft/every lower boundary component/.style={draw,dashed,thin,blue}] \usetikzlibrary{tqft} \begin{scope}[tqft/every incoming boundary component/.style={fill=green, fill opacity= .25}] \pic[tqft/pair of pants,draw,name=a,at={(0,0)}]; \pic[tqft/reverse pair of pants,draw,anchor=incoming boundary 2,name=e,at={(8,0)}]; \end{scope} \begin{scope}[tqft/every outgoing boundary component/.style={draw,thin,blue,fill=yellow}] \pic[tqft/reverse pair of pants,draw,anchor=incoming boundary 1,name=b,at=(a-outgoing boundary 2)]; \end{scope} \begin{scope}[tqft/every incoming boundary component/.style={fill=green, fill opacity= .25}] \pic[tqft/cylinder,draw,anchor=outgoing boundary 1,name=d,at=(b-incoming boundary 2)]; \end{scope} \path (b-incoming boundary 2) ++(1.5,0) node[font=\Huge] {\(=\)}; \begin{scope}[tqft/every outgoing boundary component/.style={draw,thin,blue,fill=yellow}] \pic[tqft/cylinder,draw,anchor=incoming boundary 1,name=c,at=(a-outgoing boundary 1)]; \pic[tqft/pair of pants,draw,anchor=incoming boundary 1,name=f,at=(e-outgoing boundary 1)]; \end{scope} \end{tikzpicture} =-- =-- +--{: style="clear:left"} =-- \begin{tikzpicture}\definecolor{mycolor}{RGB}{255,51,76}\draw[color=mycolor] (0.23,0.86) circle (4ex);\end{tikzpicture}