\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{tikz} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\boxslash}{\mathrel}{stmry}{27} \re@DeclareMathSymbol{\boxbslash}{\mathrel}{stmry}{28} \re@DeclareMathSymbol{\boxast}{\mathrel}{stmry}{24} \re@DeclareMathSymbol{\boxcircle}{\mathrel}{stmry}{29} \re@DeclareMathSymbol{\boxbox}{\mathrel}{stmry}{30} \re@DeclareMathSymbol{\obslash}{\mathrel}{stmry}{20} \re@DeclareMathSymbol{\obar}{\mathrel}{stmry}{58} \re@DeclareMathSymbol{\olessthan}{\mathrel}{stmry}{60} \re@DeclareMathSymbol{\ogreaterthan}{\mathrel}{stmry}{61} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \Decl@Mn@Open{\llbracket}{stmry}{'112} \Decl@Mn@Close{\rrbracket}{stmry}{'113} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Sandbox} :category: meta-syntax \hypertarget{sandbox}{}\subsection*{{Markdown+itex2MML Sandbox}}\label{sandbox} Play around \hyperlink{more}{below}. Your changes will, periodically, be rolled back. \hypertarget{examples}{}\subsubsection*{{Some examples}}\label{examples} \begin{equation} \operatorname{min} w_h p_h + w_r p_r + w_l p_l \label{objftn}\end{equation} \begin{displaymath} \left\{ \begin{aligned} \nabla \times \vec{\mathbf{B}} - \frac{1}{c}\frac{\partial\vec{\mathbf{E}}}{\partial t} &= \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &= 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}+\frac{1}{c}\frac{\partial\vec{\mathbf{B}}}{\partial t} &= \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} &= 0 \end{aligned} \right. \end{displaymath} Here's an equation \begin{equation} {\int_{-\infty}^\infty e^{-a x^2/2} \mathrm{d}x} = \sqrt{\frac{2\pi}{a}} \label{gaussian}\end{equation} which we can later refer\footnote{You can also refer to it as \eqref{gaussian}. \emph{Chacun à  son goût!}.} back to as \eqref{gaussian}. Aligned equations: \begin{displaymath} \begin{aligned} a+b &= b+a \\ a+(b+c) &= (a+b)+c \end{aligned} \end{displaymath} The Dirac equation (boxed): \begin{displaymath} \boxed{(i\slash{D}+m)\psi = 0} \end{displaymath} Here's the table of Clifford\footnote{For more information, see \href{http://en.wikipedia.org/wiki/Clifford_algebra}{Wikipedia}.} algebras over $\mathbb{R}$: \begin{tabular}{r|c|c|c|c|c|c|c|c|c} $j$&$0$&$1$&$2$&$3$&$4$&$5$&$6$&$7$&$8$\\ \hline $\mathcal{C}\ell_{j}^-$&$\mathbb{R}$&$\mathbb{C}$&$\mathbb{H}$&$\mathbb{H}\oplus\mathbb{H}$&$\mathbb{H}(2)$&$\mathbb{C}(4)$&$\mathbb{R}(8)$&$\mathbb{R}(8)\oplus\mathbb{R}(8)$&$\mathbb{R}(16)$\\ $\mathcal{C}\ell_{j}^+$&$\mathbb{R}$&$\mathbb{R}\oplus\mathbb{R}$&$\mathbb{R}(2)$&$\mathbb{C}(2)$&$\mathbb{H}(2)$&$\mathbb{H}(2)\oplus\mathbb{H}(2)$&$\mathbb{H}(4)$&$\mathbb{C}(8)$&$\mathbb{R}(16)$\\ \end{tabular} where the generators of $\mathcal{C}\ell_{j}^\pm$ satisfy \begin{displaymath} \gamma_i\gamma_j +\gamma_j \gamma_i =\pm 2\delta_{i j} \end{displaymath} and $\mathcal{C}\ell_{n+8}^\pm = \mathcal{C}\ell_n^\pm \otimes \mathbb{R}(16)$. \begin{displaymath} \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} \end{displaymath} \begin{displaymath} \mathbf{V}_{1} \times \mathbf{V}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\\\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \\ \end{vmatrix} \end{displaymath} \hypertarget{second_page}{}\subsection*{{Second Page}}\label{second_page} \hypertarget{more}{}\subsubsection*{{More Examples}}\label{more} \begin{displaymath} \nabla \times \vec{E} = - \frac {\partial \vec{B}}{\partial t} \end{displaymath} \begin{equation} \oint \mathbf{B}\cdot \mathrm{d}\mathbf{l} = \href{https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_circuital_law}{\mu_0 I_\text{enc}} \label{Ampere}\end{equation} $H^1(\mathcal{Z}, \mathcal{O}(-k))$ Let $G=(V,E)$ be a graph, with $w:V\to [0,1]$ a weight function. \begin{displaymath} \{Q_i, Q_j\} = \delta_{ij}\mathcal{H}. \end{displaymath} \hypertarget{third_page}{}\subsection*{{Third Page}}\label{third_page} \hypertarget{theorems}{}\subsubsection*{{Theorems}}\label{theorems} \begin{udefn} Let $H$ be a subgroup of a group $G$. A \emph{left coset} of $H$ in $G$ is a subset of $G$ that is of the form $x H$, where $x \in G$ and $x H = \{ x h : h \in H \}$. Similarly a \emph{right coset} of $H$ in $G$ is a subset of $G$ that is of the form $H x$, where $H x = \{ h x : h \in H \}$. \end{udefn} \begin{lemma} \label{LeftCosetsDisjoint}\hypertarget{LeftCosetsDisjoint}{} Let $H$ be a subgroup of a group $G$, and let $x$ and $y$ be elements of $G$. Suppose that $x H \cap y H$ is non-empty. Then $x H = y H$. \end{lemma} \begin{proof} Let $z$ be some element of $x H \cap y H$. Then $z = x a$ for some $a \in H$, and $z = y b$ for some $b \in H$. If $h$ is any element of $H$ then $a h \in H$ and $a^{-1}h \in H$, since $H$ is a subgroup of $G$. But $z h = x(a h)$ and $xh = z(a^{-1}h)$ for all $h \in H$. Therefore $z H \subset x H$ and $x H \subset z H$, and thus $x H = z H$. Similarly $y H = z H$, and thus $x H = y H$, as required. \end{proof} \begin{lemma} \label{SizeOfLeftCoset}\hypertarget{SizeOfLeftCoset}{} Let $H$ be a finite subgroup of a group $G$. Then each left coset of $H$ in $G$ has the same number of elements as $H$. \end{lemma} \begin{proof} Let $H = \{ h_1, h_2,\ldots, h_m\}$, where $h_1, h_2,\ldots, h_m$ are distinct, and let $x$ be an element of $G$. Then the left coset $x H$ consists of the elements $x h_j$ for $j = 1,2,\ldots,m$. Suppose that $j$ and $k$ are integers between $1$ and $m$ for which $x h_j = x h_k$. Then $h_j = x^{-1} (x h_j) = x^{-1} (x h_k) = h_k$, and thus $j = k$, since $h_1, h_2,\ldots, h_m$ are distinct. It follows that the elements $x h_1, x h_2,\ldots, x h_m$ are distinct. We conclude that the subgroup $H$ and the left coset $x H$ both have $m$ elements, as required. \end{proof} \begin{theorem} \label{Lagrange}\hypertarget{Lagrange}{} \textbf{(Lagrange's Theorem).} Let $G$ be a finite group, and let $H$ be a subgroup of $G$. Then the order of $H$ divides the order of $G$. \end{theorem} \begin{proof} Each element $x$ of $G$ belongs to at least one left coset of $H$ in $G$ (namely the coset $x H$), and no element can belong to two distinct left cosets of $H$ in $G$ (see Lemma \ref{LeftCosetsDisjoint}). Therefore every element of $G$ belongs to exactly one left coset of $H$. Moreover each left coset of $H$ contains $|H|$ elements (Lemma \ref{SizeOfLeftCoset}). Therefore $|G| = n |H|$, where $n$ is the number of left cosets of $H$ in $G$. The result follows. \end{proof} \begin{cor} \label{OrderDivides}\hypertarget{OrderDivides}{} Let $x$ be an element of a finite group $G$. Then the order of $x$ divides the order of $G$. \end{cor} \begin{theorem} \label{}\hypertarget{}{} Let $f : \Delta \longrightarrow \Delta,$ where $\Delta=\{z\in\mathbb{C}: \vert z \vert \lt 1\}$, be analytic with $a \in \Delta$. Then \begin{displaymath} \left\vert\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}\right\vert\le \left\vert\frac{z-a}{1-\overline{a}z}\right\vert \end{displaymath} for all $\vert z \vert \le 1$ and \begin{displaymath} \frac{\vert f'(a)\vert}{1-\vert f(a)\vert^2}\le \frac{1}{1-\vert a \vert^2}. \end{displaymath} Furthermore, equality holds iff $f$ realizes a conformal mapping of $\Delta$ onto itself. \end{theorem} \begin{proof} Let $w=\frac{z-a}{1-\overline{a}z}$ and put $\phi(w)=\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}$. Define for $\abs{b}\lt 1$ $C_b(z)=\frac{z-b}{1-\overline{b}z}.$ All conformal maps from $\Delta$ to itself, sending $b$ to $0$, are of the form $C_b(z)e^{i\gamma}$ for $\gamma\in[0,2\pi].$ In this notation, $\phi(w)=C_{f(a)}\circ f \circ C_a^{-1}(w),$ where $C_a^{-1}$ is the inverse of $C_a$ as a function. Note that $C_a(z)$ is conformal, so it has an inverse. It is clear that $\phi(0)=C_{f(a)}\circ f \circ C_a^{-1}(0)=C_{f(a)}(f(a))=0$. Since $C_a^{-1}: \Delta \longrightarrow \Delta$ and $f : \Delta \longrightarrow \Delta$ and $C_{f(a)}: \Delta \longrightarrow \Delta,$ then $\vert\phi(w)\vert\lt 1$ for $\vert w\vert \lt 1 .$ Applying Schwarz's lemma, we obtain $\vert\phi(w)\vert\le \vert w \vert$ for $\vert w \vert \le 1$. Furthermore, if equality holds, then $f(z)=e^{i\gamma'} z$ for $\gamma'\in [0,2\pi]$. Therefore, \begin{equation} \left\vert\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}\right\vert\le \left\vert\frac{z-a}{1-\overline{a}z}\right\vert \label{eqn1}\end{equation} for all $\vert z \vert\le 1.$ Rearranging, we obtain \begin{displaymath} \left\vert\frac{f(z)-f(a)}{z-a}\right\vert\le\left\vert\frac{1-\overline{f(a)}f(z)}{1-\overline{a}z}\right\vert. \end{displaymath} If we take the limit as $z$ tends to $a$, we obtain \begin{displaymath} \left\vert f'(a)\right\vert \le \left\vert\frac{1-\vert f(a)\vert ^2}{1-\vert a \vert^2}\right\vert=\frac{1-\vert f(a)\vert^2}{1-\vert a \vert^2}, \end{displaymath} or \begin{displaymath} \frac{\vert f'(a)\vert}{1-\vert f(a)\vert^2}\le \frac{1}{1-\vert a \vert^2}. \end{displaymath} As said above, if equality holds in \eqref{eqn1}, then Schwarz's lemma tells us that $\phi(w)=e^{i\gamma'}w$. Thus, $\phi(w)=C_{f(a)}\circ f \circ C_a^{-1}(w)=e^{i\gamma'}w,$ so $f(z)=C_{f(a)}^{-1}(e^{i\gamma'}C_a(z))$. Since $e^{i\gamma'}C_a(z)$ is conformal, $C_{f(a)}^{-1},$ the inverse function of $C_{f(a)}$, is conformal, and a composition of conformal maps is conformal, then $f$ is a conformal map of $\Delta$ onto itself. Conversely, if $f$ is a conformal map of $\Delta$ onto itself, then $\phi(w)=C_{f(a)}\circ f \circ C_a^{-1}(w)=e^{i\gamma}C_b(w),$ since a composition of conformal maps is conformal and because all conformal maps from $\Delta$ onto itself are of the form $e^{i\gamma}C_b(w).$ We also know that $\phi(0)=0,$ so $b=0$. Therefore, \begin{displaymath} \phi(w)=e^{i\gamma}C_0(w)=e^{i\gamma}w \Leftrightarrow \vert\phi(w)\vert=\vert w \vert \Leftrightarrow \left\vert\frac{f(z)-f(a)}{1-\overline{f(a)}f(z)}\right\vert=\left\vert\frac{z-a}{1-\overline{a}z}\right\vert \end{displaymath} for all $\vert z \vert\le 1$. In sum, equality holds in \eqref{eqn1} iff $f$ is a conformal map from $\Delta$ to itself. \end{proof} \begin{remark} \label{}\hypertarget{}{} Someone needs to code $\backslash$abs, i.e. $\backslash$left$\backslash$vert \# $\backslash$right$\backslash$vert. This is terribly annoying. Also, when using \$\$, why must one enter a line before and after. \end{remark} \hypertarget{svg_graphics_created_in_svgedit}{}\paragraph*{{SVG graphics, created in SVG-Edit:}}\label{svg_graphics_created_in_svgedit} \begin{displaymath} \end{displaymath} \begin{displaymath} \end{displaymath} $K^0\overline{K}^0$ Mixing \hypertarget{yet_more_examples}{}\paragraph*{{Yet More examples}}\label{yet_more_examples} \begin{itemize}% \item SVG: \end{itemize} \begin{itemize}% \item Animated SVG \end{itemize} \begin{itemize}% \item Complicated commutative diagrams (equations in SVG) \end{itemize} \begin{itemize}% \item SVG in equations. \end{itemize} In $SU(3)$, $ \includegraphics[width=2em]{young1} \otimes \includegraphics[width=1em]{young2} = \includegraphics[width=2em]{young3} \oplus \includegraphics[width=3em]{young4}$. \begin{itemize}% \item Cases: \end{itemize} \begin{displaymath} r_{a+1} = \begin{cases} 0 & \text{with prob.}\quad \exp(-\theta r_a) \\ \max \lbrace \delta r_a, z \rbrace & \text{with prob.}\quad 1 - \exp(-\theta r_a) \end{cases} \end{displaymath} \begin{itemize}% \item Stretchy Brackets: \end{itemize} \begin{displaymath} q_a(z) = \sigma_a^{-1} \exp{\left[ -\frac{\gamma + z}{\sigma_a} \right]} \end{displaymath} \begin{itemize}% \item Linearity of Quadrature Rules \end{itemize} \begin{displaymath} \sum_{i = 1}^N {\left( {\alpha f(x_i ) + \beta g(x_i )} \right)w_i } = \alpha \sum_{i = 1}^N {f(x_i )w_i } + \beta \sum_{i = 1}^N {g(x_i )w_i } \end{displaymath} \begin{itemize}% \item Linearity of Integrals \end{itemize} \begin{displaymath} {\int_a^b {\left( {\alpha f(x)\, + \beta g(x)} \right)dx = } \alpha \int_a^b {f(x)\,dx} + \beta \int_a^b {g(x)\,dx} } \end{displaymath} \begin{itemize}% \item Can we talk about $x_i^2$ inline? What about $\int_a^b x^2\,dx$? Inline fractions $\frac{x-x_2}{x_1-x_2}$? \item Big fractions \end{itemize} \begin{displaymath} p_3 (x) = \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} + \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} + \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} + \left( {\frac{1}{2}} \right)\frac{{\left( {x - \frac{1}{2}} \right)\left( {x - \frac{3}{4}} \right)\left( {x - 1} \right)}}{{\left( {\frac{1}{4} - \frac{1}{2}} \right)\left( {\frac{1}{4} - \frac{3}{4}} \right)\left( {\frac{1}{4} - 1} \right)}} \end{displaymath} \begin{itemize}% \item Diagram \end{itemize} \begin{displaymath} \begin{matrix} P_1(Y) &\to& P_1(X) \\ \downarrow &\Downarrow\mathrlap{\sim}& \downarrow \\ T' &\to& T \end{matrix} \end{displaymath} \begin{itemize}% \item $\backslash$mathcal\{\} versus $\backslash$mathscr\{\}\begin{displaymath} \begin{gathered} \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ \text{versus}\\ \mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \end{gathered} \end{displaymath} \end{itemize} \vspace{.5em} \hrule \vspace{.5em} \begin{equation} \itexarray{\arrayopts{\align{center}} } \equiv \left({U(k)}^{n_1},\{v_i\}\right) \label{quiver}\end{equation} ``This is \textbf{my text}'', says Anymouse. Ruby code example: \begin{verbatim} class Person attr_reader :name, :age def initialize(name, age) @name, @age = name, age end def <=>(person) # Comparison operator for sorting @age <=> person.age end def to_s "#@name (#@age)" end end group = [ Person.new("Bob", 33), Person.new("Chris", 16), Person.new("Ash", 23) ] puts group.sort.reverse\end{verbatim} A Python example: \begin{verbatim}ListOfStrings( title = _("A List of some strings"), help = _("A List of strings"), orientation = "horizontal" )\end{verbatim} \end{document}